
Multi-mechanism Single Sign-On in Grids

(CESNET Technical Report)

Daniel Kouřil, Luděk Matyska, and Michal Procházka

CESNET z. s. p. o., Zikova 4, 160 00 Praha 6,
Masaryk University, Botanická 68a, 602 00 Brno

Czech Republic
{kouril,ludek,michalp}@ics.muni.cz

Abstract. Recently, a lot of effort has been invested in development of various types of
authentication mechanisms that offer strong security characteristics for building grid sys-
tems. Being based on one of the mechanisms, most grid environments today provide strong
authentication protocols, however, they are usually bound with only one, in most cases
based on public key infrastructure (PKI). Such an arrangement works pretty well, but un-
necessarily limits users since they are required to use only the one mechanism, which may
not be flexible or convenient. A better solution would be to offer users a freedom to choose
their own authentication mechanism—provided it is strong enough—and provide automatic
translations that guarantee that all services and components are securely available regardless
of the choice of authentication mechanism. This technical report surveys several authentica-
tion mechanisms that are used in contemporary grid and other distributed systems and also
discusses possible transitions to translate credentials. The report summarizes recent results
in this area, many of which have been achieved by the authors.
This technical report is an extended version of the paper we presented at the CESNET08
conference [?]. It also contains information how the described tools have been deployed in
the environment of Czech national grid infrastructure METACentrum.

1 Public Key Infrastructures

Asymmetric cryptography allows for efficient key management, especially in loosely-coupled dis-
tributed environment. The concept of two separated keys has been proven to provide a scalable
solution to parties that need to mutually communicate and do not share any pre-distributed secret.
As the simplest implementation of a asymmetric cryptography, a plain key-pair can be used to
establish an authentication connection. This approach is employed by the popular ssh protocol,
where such a simple public-key based authentication is mandatory to implement [1] and widely
used. While it is convenient for users, experience shows that having authentication based only on
plain keys is not sufficient and is hard to maintain in a large environment. The main drawbacks are
a lack of information who a particular public key is bound to and a lack of centralized mechanism
that could be used to revoke a public key if the corresponding private key becomes untrusted.
These drawbacks have been fully revealed recently, when a vulnerability in some version of the
openssl toolkit was announced [2], which could cause that weak cryptographic material was gen-
erated. When handling the vulnerability by the grid community, an audit has been performed to
check all Grid certificates. If a weak key for a certificate has been found, the certificate has been
revoked and the certificate owner asked to re-generate their certificate. This allowed to resolve the
issue quickly and centrally invalidate all vulnerable certificates. No such precaution can be imple-
mented for ssh keys deployed on many machines due to the lack of centralized key management.
Moreover, since the lifetime of the keys is not limited, weak keys can still survive on the systems,
until the system administrator or the user detect and remove them from each and every system.

Based on these experiences, it is obvious that an additional infrastructure to manage key-pairs is
necessary in every large-scale distributed environment. There are several public key infrastructures
(PKIs) available today. The most widely used PKI, which is based on X.509 certificates (PKIX) is
standardized by ISO/ITU-T specifications [3] and was also profiled for Internet use by IETF [4].



The standards define the format of a public-key certificate, and also other components (e.g.,
certification and registration authorities) and processes (e.g., certificate revocations) needed to
provide the whole infrastructure. X.509 certificates have became very popular over past years and
are used in widely used security protocols, such as TLS.

To overcome some issues of PKIX and to cover other areas of computer security, the Simple
public key infrastructure (SPKI) has been specified [5, 6]. SPKI concerns rather with authorization
issues and binds a public key with a set of authorization attributes with the keyholder name being
just one of them.

On the other side of the public key management spectrum, there is Pretty Good Privacy
(PGP) [6]. PGP is based on a completely different schema as it does not use the service of central-
ized authorities. In PGP users build their own web of trust in which they act as an independent
identity vetting authority. PGP users sign certificates assessing identity of other users and share
these certificates globally. The principle of the web of trust resembles reputation systems that are
emerging currently.

1.1 PKI in Grids

Even though both SPKI and PGP offer interesting features, to our best knowledge they are not
used in any current Grid environment. Contemporary Grids that are based on PKI either use the
standard X.509 PKI or they use a special form of digital certificates derived from X.509.

The former approach is employed by the UNICORE grid middleware [7], where jobs are signed
by the owner’s private key before submission. In the basic version, the UNICORE infrastructure
than uses the X.509 certificate to verify the signature during the job processing.

Other grid systems based on PKI use certificates in a different way. Instead of creating long-
lived digital signatures, they provide users with mechanism of single sign-on (SSO) and credential
delegation, which allows users to submit a job to or request an operation at the infrastructure
along with appropriate credentials. The credentials are used by the job and middleware component
to perform any operations that are necessary to complete the job on the user’s behalf. Proxy

certificates [8] are very often used as the mechanism providing SSO and delegation. A proxy
certificate is a special kind of X.509 certificate that is signed by an ordinary user, not by a
dedicated CA. The generation of a proxy certificate is performed during the login stage by the
user. Lifetime of proxy certificates is very short, usually ten hours. Proxy certificates provide an
efficient mechanism for SSO, however they also present new issues. One of the most severe one is
a lack of revocation mechanism that could be used to revoke existing proxy certificate. Another
issue concerns support of long-running jobs and other operations that last longer than is the proxy
lifetime. Despite a renewal mechanism has been designed and implemented [9], it is not an ideal
solution since it requires introduction of an additional trusted component.

Proxy certificates are often managed using MyProxy [10, 11], which provides a repository where
proxy certificates stored and later retrieved using a password or another credential assigned during
the storing step. In addition to support of the repository mode, a MyProxy server can also be
configured to act as an CA issuing standard X.509 certificates.

Regardless particular type of certificates or PKI, one of the key drawbacks of the PKI is that
current tools and producers for certificate management are too complicated for users. This leads
either to rejection of the PKI or to insecure private-key management, which dis-empowers all the
Grid infrastructure.

2 Kerberos

Kerberos [12, 13] is an authentication protocol using a trusted central authentication service —
Key Distribution Center (KDC). Each user and service shares a secret key with KDC. KDC issues
tickets asserting identity of their bearers, which serve similar purpose as public-key certificates.
A ticket has a limited lifetime but unlike public-key certificates, it can be only used against a
particular end-service, which is specified in the ticket. To support the SSO principle, Kerberos



uses a universal Ticket Granting Ticket (TGT) that is used to authenticate against a KDC to
retrieve tickets for end-services. Apart from supporting mutual authentication of the peers, the
Kerberos protocol also provides means for message encryption or integrity protection.

Since a KDC holds a list of all users and services, every authentication among users and services
involves contacting KDC. This feature makes it hard to deploy Kerberos in highly distributed envi-
ronments since users must be registered with KDC first. In order to make Kerberos more scalable,
the users’ space can be divided into administrative groups (realms), served by independent KDCs.
The Kerberos cross-realm authentication mechanism allows seamless interoperability among dif-
ferent realms. The current mechanism of establishing a cross-realm trusted relationship is one the
most serious obstacles that prevent from using Kerberos-based infrastructure in Grid systems. In
order to create a such a relationship, the KDC administrators must meet to exchange cross-realm
keys, which does not scale in large infrastructure. However, Kerberos has become a de-facto stan-
dard for local security infrastructures operated by many institutions. There are several Kerberos
implementations available today, both open-source and commercial.

The TGT has the same problem of revocation as proxy-certificates—its lifetime is usually
limited to one day at most, to lower risk of TGT theft or compromise.

3 SAML and Identity Federations

Federating institutions has become very popular recently, because it allows users to co-operate
in a secure manner. The concept of federation can be applied to environment operating both
Kerberos and PKI, but in this section we primarily focus on system based on the Shibboleth
infrastructure [14].

An identity federation is an infrastructure connecting user management systems from different
institutions to provide standardized access to information about users maintained by their systems.
Federations provide a standardized platform to which systems for user management and end
applications can connect and share authentication and authorization data. Every organization
participating in a federation manages its users by a local user management system. An Identity

Provider (IdP) service is built on the top of each local user management system, providing a
standardized interface to access authentication information and other attributes about the users.
Any party in the federation can get this information by calling the IdP service using a standardized
protocol. End services (Service Providers—SP) are able to process the data returned by the user’s
home IdP and use them to make access control decisions. Before users are allowed to use a service,
they have to present a set of attributes issued and signed by their home IdP. These attributes are
provided to users or to a service working on their behalf upon proper authentication of the user
with the IdP.

The major advantage of using the federation model lies in the fact that users use their home
institution’s credentials to access any service in a federation. Whenever users access a service (SP)
and do not have an authenticated session activated, they are redirected to their home IdP to
authenticate. After successful authentication they are sent back to the SP along with additional
information about their identity added by the IdP. The SP accepts this authentication assessment
since it trusts the IdP, and applies appropriate access control methods. Every SP in the federation
uses this mechanism transparently from the user’s point of view. There is no need to introduce
new credentials for every new service or to synchronize existing credentials (like passwords) among
different services. Having no additional credentials also means there is no need to distribute them
among the users. Such an arrangement not only eases credential management but also makes
it more secure, as users are only required to maintain one piece of authentication information
and always authenticate at the same (web) interface. Unlike PKI, the federation model is more
acceptable to the users, as it is not tied to any particular authentication method and institutions
can select the most appropriate method for their users.

Upon proper user authentication, the IdP provides a set of attributes that represent information
about the user, its affiliations and roles. They usually include user’s name, home institution,
roles and position within the institution, group membership, etc. The attributes are very often



encoded using the Security Assertion Markup Language (SAML) [15] in the form of standardized
SAML assertions. In this way the home institution provides information that can be used, e.g.,
for specification of a group of users without explicitly naming them.

Enhanced privacy is a potential side effect of the above-mentioned use of attributes. The IdP
could provide only attributes, not a precise user identity (i.e., it could provide the information
that a person is enrolled on course identified as CS102 without revealing his or her name or other
unique identification). Such attributes can be sufficient for a service to make an authorization
decision, however the precision of an audit trace is lost (while the privacy of the user is enhanced).
In the event of abuse, the home institution is still able to identify the user from their local logs.
This approach is interesting if we do not want to reveal the individual user’s identity to a service
administrator.

Today’s middleware that implements the federation model cannot be directly used in grid
environment because it target only at the web environment. Several projects work on integrat-
ing federations into the grid and vice versa. Two most known projects are GridShib [16] and
ShibGrid [17]. GridShib allows for interoperability between the Globus Toolkit1 grid middleware
software and Shibboleth federation middleware. Globus security is based on proxy certificates used
authentication. GridShib consists of several modules that allow users to access the grid by various
ways. In general GridShib can work in two modes, pull and push mode. In push mode user, after
the successful authentication, obtains proxy certificate from an on-line CA which is part of the
federation, therefor response from user’s IdP can be included in the proxy certificate as an exten-
sion. Afterwards user can access Globus services which can extract the information from the proxy
certificate and make authorization decision. In pull mode the Globus service can directly contact
IdP and obtain user’s attributes. ShibGrid has a similar goal, it integrates British National Grid
Service (NGS) into the British academic federation based on Shibboleth middleware, but it does
it in different way. NGS uses proxy certificates for authentication as well as Globus. ShibGrid also
introduces two modes of operation, one is for users with the UK eScience certificate and second
one is for users without it. If user does not have UK eScience certificate she accesses NGS portal as
usual SP in the federation. Proxy certificate generation is made behind the portal on the MyProxy
server which has built in MyProxy-CA then portal can use user’s proxy certificate to access the
resources. In second mode when user has the correct certificate it only access special web server
which is SP. After successful authentication user obtains from the web server encrypted attributes
issued by her IdP. These attributes user’s client application puts into the newly generated proxy
certificate and upload it to the MyProxy server.

4 One Time Passwords

Passwords are very often used to user’s authentication in computer systems. Regardless the pop-
ularity of passwords, they can hardly be used for authentication to Grid services since they do
not provide SSO. However, passwords are still usually used in Grids to initial login to the infras-
tructure, i.e., to access private keys in files or MyProxy repositories, obtain a Kerberos tickets,
etc.

One interesting implementation of passwords is one-time passwords (OTPs) that can be used
even from untrusted location since their potential sniffing does not cause any harm. As suggested by
the name, an OTP can be used only once and is not accepted for authentication after using. From
the user point of view an OTP works in the same way as usual passwords do, except to be always
different. If an OTP-based system is to be to be deployed within an infrastructure which already
uses passwords, changes required to be applied are minimal. Only the components to validate the
passwords have to be substituted, which is usually an acceptable change for deployment. The other
change, which is more difficult, is to provide users with tools to manage their OTP and train them
in proper usage of the tools.

OTP requires users to manage their lists of generated passwords which are sequentially used for
authentication, fortunately there exist hardware devices or applications (so called tokens or soft-

1 http://www.globus.org



tokens) which facilitate managements the OTPs for the user. OTPs can be managed in several ways
by these tokens differing in generating, storing and usage of the password. Application tokens are
usually meant for mobile devices such as PDA or mobile phones. Both types of the tokens provide
two-factor authentication, where user has to prove that they owns something (i.e., the token) and
also knows something (PIN or password for the token). The following chapters describe methods
available for managing OTPs.

4.1 Pregenerated sequence of passwords

In this model OTPs are generated before their first use, so the user gets a list of passwords.
Passwords are usually printed on paper or maintained by a soft-token that generates the requested
password on demand. A user needs to know which password from the list has to be used for
authentication to the server, therefor a server has to send the index of the required password at
the begining of the authentication process. This system is pretty easy but the user has to updated
the list of passwords whenever they have used last one from the list. This principle is used by two
systems known as S\Key [18] and OPIE [19], both of them are based on the Lamport’s schema [20].
The schema uses an one-way function which eases implementation of password maintance on the
server side without requiring the server to store the whole list of OTPs for each user. In this
system the user chooses initial password (pass-phrase) and the server generates corresponding
random string called seed. User initial password and seed are passed to the hash function which
results in a password zero. The hash function is then applied N-times on the password zero, which
leads to a list of N one-time passwords. The passwords are used from the end of the list, precisely
from the latest generated password, therefor server needs to store only last used password along
with the corresponding index from the list. Server can do easily validation of the provided password
by applying the hash function on the last used password. If the password is correct then server
replaces the stored password with the provided one and decrements the index.

There are also methods like OTPW [21] or HOTP [22] which are not based on Lamport’s
scheme. They are very promising alternative to methods mentioned above.

Passwords generated by the one way function are not comfortable for use because they are
long random numbers. Therefor both specifications OPIE and S\Key define translation dictionaries
which encode the long number into six English words (e.g. JIM NOB EARN WIFE RAIN HATH).

Authentication process is based on challenge-response principle, server sends the seed and index
of the password to the user. User replies with corresponding OTP password. If the application
protocol does not support more than one interation for authentication handshake like HTTP Basic
Authentication, where user name and password are send together in one message, it is possible
that user provides directly last password from her list and marks it as used.

4.2 Challenge-Response password generating

OTP passwords based on this mechanism are generated by user’s PIN code and authentication
server’s challenge. Typical representative of this category is the CryptoCard RB-1 token2. The user
enters their PIN code to the payment card-sized token using an embedded keyboard, resulting in an
OTP being then displayed on the small display. The OTP is generated by the MD5 hash function,
based on the challenge entered by the user and secret key stored on the token as a parameters.
The secret key is shared with the authentication server. The token is programmable and various
levels of security can be set (length of the PIN code, number of invalid PIN enters) therefor the
token can be used indefinitely. As is common for smart cards, the token is disabled if an invalid
PIN code is entered several times subsequently.

4.3 Time-based password generating

This type of OTP uses actual time, so it works without any interaction with the authentication
server, but on the other side the time has to be precisely synchronized between the authentication

2 http://www.cryptocard.com



server and the token, this could poses a problem. Another disadvantage of this approach is vul-
nerability against replay attack, because the password is valid for defined period of time (e.g. one
minute). This type of OTP is used in RSA SecurID3 which has only display where every minute is
genereated new password. User uses displayed password together with her personal PIN, without
that PIN the password from the token is unusable, it is protection against stealing or losing the
token. The token has to exchange shared secret, which cannot be then changed on the token, with
authentication server during the initialization proces. SecurID tokens have limited lifetime from
one to five year depends on the type, after that period new one has to be used. The limited lifetime
causes higher cost of the whole system in compare with other types of tokens, however SecurID
tokens are to most spread tokens in the world.

4.4 Open source soft-tokens

These tokens are applications which can be uploaded into common mobile devices such as mobile
phones which have user by itself for most of the time. These devices are not pernamently connected
with the computer, therefor posibility of compromising through the computer is very low. Most
of todays mobile phones and PDAs are capable to run that aplications because the application is
written in Java Platform Micro Edition (J2ME). Aplications are distributed in standard format
with jad or jar extension, that is why they can be uploaded into the device in a standard way.
Serial or USB cable, IrDA or Bluetooth can be used for upload the aplication into the mobile
device or the aplication can be downloaded directly from the web server over WAP procotol or
some other, which is supported by the device. In this section we will introduce some of open source
soft-tokens which implement different OTP generating methods.

– otpgen4 It is calculator for S\Key and OPIE methods, it supports MD5, MD4 and SHA1 hash
functions. The seed, index of OTP and type of hash function has to be set in the configuration.
User do not need to setup these values repeatedly because they are stored in the memory of
the device. After usege of password the application decreases OTP index in order to be ready
for next generating. The generated password is displayed in human readable word form as well
as in hexadecimal format.

– j2me-otp5 This calculator is port of OTP applet to the J2ME. It implements S\Key algorithm
with MD5 hash function. In compare to previous calculator it is harder to use, because user
has to enter the seed and index of OTP everytime. The input field for seed has caption
Challenge which is misleading, also during generating process there is missing information
about progress. The input function does not clean up previous results, the new one is added
next to the previous therefor it is very hard to distinguish each other.

– Mobile-OTP6 It is used for generating OTP based on the actual time, PIN and shared secret.
Last two values have to be shared with the authetication server. The reason why these two
values are present is to be able to authenticate the device itself (shared secret) and user (PIN).
After the installation the midlet has to be inicialized first that means generate shared secret
and transfer it securely to the server.

– FreeAuth7 The project is descendant of Mobile-OTP adding support for time based OTP. Used
algorithm does not require user’s PIN to be stored on the server. However the midlet is very
unstable and is not feasible for production environment.

4.5 OTP support in applications

OTP is widely supported, e.g. by open-souce libraries for S\Key and OPIE mechanisms. S\Key
was integrated into the OpenSSH program, which is able to support authentication by one time

3 http://rsasecurity.com
4 http://marcin.studio4plus.com/en/otpgen/
5 http://tanso.net/j2me-otp/
6 http://motp.sourceforge.net/
7 http://www.freeauth.org/



passwords. Variety of PAM modules supports different OTP mechanisms, therefor every appli-
cation supporting PAM can use OTP. Applications which supports SASL protocol like various
SMTP server can also integrate OTP as an authentication mechanism. In WWW environment
special modules for Apache web server can be used or PAM modules or special external applica-
tion installed on the server.

As we can see OTP can be deployed in various applications, nevertheless it is hard to deploy
OTP into the large or distributed environment. Most of mentioned types of OTP use local database,
which is stored next to the application server, therefor managing this database is not effective and
it is problematic to use that data by other services from different places or networks. This is not
true for commercial solutions with the hardware tokens, but they are closed source and do not
fulfil all requirements.

5 Credential Transitions

Virtually all current grid systems support only a single authentication mechanism and do not pro-
vide any coordinated way how a user could smoothly change their credential types. Ideally such
transitions would be also supported by the middleware that could obtain a credential type accord-
ing to the needs of the end service or another middleware component. Such a capability would ease
integration of a Grid with other systems that require different authentication mechanisms. In this
section we provide an overview of transition mechanisms that are available from current security
components. We have tested all the transition described and also contributed to development of
several components and mechanisms involved. A schema of transitions can be seen in Fig. 1. The
main use-case we have in mind is to ease users’ work and allow them to use a broader scale of
authentication methods instead of dictating a particular one. According to our experience, if an
infrastructure is sufficiently easy to use, it is also safer since users do not pass over barriers using
insecure techniques (such as uncontrolled copying of private keys, etc.).

long−term
krb5 passwd

long−term
PKI creds

(token, file)

Krb5 TGT

X.509 proxy

OTP

SAML

(shortlived)
X.509 cred

MyP
roxy

 C
A

MyProxy CA

grid−proxy−init

std krb5

OTP krb5

PKIN
IT

PKINIT
MyProxy Repository

On−line CA

PKIN
IT

Fig. 1. Schema of transitions



5.1 Converting OTP to X.509 certificate

A MyProxy server operating in both the CA or repository modes uses password based authentica-
tion of the clients. Using the pluggable PAM mechanism the server can be configured to support
additional verification methods. In our testing environment we successfully configured a MyProxy
server using two PAM modules that implement OPIE and MOTP mechanisms which represents
two different OTP generating methods. For both these mechanisms there also exist open-source
Java client applications that can be loaded to Java-enabled mobile devices. Using these applica-
tions users can have secure access to their certificates (either direct or rather via a portal) even
from machines that cannot be trusted for input of long-term passwords or other type of credentials.

PAM module for OPIE mechanism is present as a package in common Linux destributions
or with other tools for supporting OTP. Either these tools and PAM module works with local
database of the users. The database contains all necessary information needed for authentication
such as last used OTP password and its index and corresponding seed. The database has to be
initialized and list of OTP passwords has to be generated for every user. The PAM module during
authentication process checks whether provided password is correct and if so it updates database
with new password and index.

For MOTP there is available mod mobile otp PAM module from the project website in form of
source code. Unfortunately provided Makefile needs to be changes in order to be able to produce
dynamic libraries. But after that change everything works well. MOTP PAM module also requires
database with information about all users.

Mentioned PAM modules can be used together or with other PAM modules for authentication
(e.g. Kerberos) which expands MyProxy flexibility of supported authentication mechanisms. There
is no need to make any changes on the client side of MyProxy, it can be used as usual. If the
user with OTP wants to download the proxy certificate from the MyProxy server or signs the
certificate request she uses corresponding command providing password from her OTP generator.
This password is then passed to the MyProxy server where is validated by one of the available
PAM modules, if validation was successfull then MyProxy will do requested operation. Problem
could be with OPIE PAM module, because MyProxy does not have any way to send the seed
and index to the the client, therefor the client has to remember last used password and seed.
User can use e.g. optgen which manages this information by itself. SASL, general framework for
authentication, could be also used because MyProxy supports it.

If the MyProxy works in repository mode, user has to upload the certificate first. During upload
process user must identify itself with the username stored in OTP database and also she can set
the password which will protect user’s data, this option has to be switched off while using the
OTP in order to enable PAM functionality. After the user is successfuly authenticated, MyProxy
does authorization control whether provided user name correspondes with the subject name of the
proxy certificate.

In on-line CA mode, MyProxy has to have in configuration file specified mapping from the
user name (stored in OTP database) and newly created subject name of the certificate. MyProxy
allows to use localy stored file with mapping from user name to subject name as well as LDAP
server.

Mentioned approach, where user can retrieve his proxy certificate or get new certificate from
MyProxy using OTP password, implements SSO mechanism for grid environment. MyProxy can
be also used as an central authentication server similar to KDC in Kerberos protocol. End services
can validete user’s passwords against the MyProxy server. Side effect of this approach is obtaing
the certificate which can be used by the end service. By this way we can implement OTP gateways
for SSO access to the grid environment.

Similar gateway can be implemented for SSH servers, where SSH server lets validation of the
password on the MyProxy server. After successful athentication MyProxy returns user’s certificate
back to the SSH server, where can be used by the user for authentication to the next services. This
functionality would require changes in SSH code, but PAM module developed at METACentrum
can be used. This module implements communication with the MyProxy server.



Main disadvantage of above approach is lack of administration interface on MyProxy server
for the users where they can initialize their OPIE passwords or change PINs for MOTP. Also
administrators needs mechanism for imaintaining users entries in OTP database. Nowadays we
are discussing two solutions of these administrative problems. First is integration of OTP adminis-
tration with local identity management system which is generally used on bigger institutions. This
will require interface for managing OTP database which can be then used by the identity system.
Second solution is to enhance MyProxy protocol with missing administration functionality.

5.2 Converting SAML to standard X.509 certificate

In order for Grids and identity federations to be interoperable it is important that people authen-
ticated through an identity federation can easily access Grid resources. In terms of authentication
and single single-on it means that the users must be able to identify themselves using credentials
that are acceptable by the grid infrastructure. Since most current Grids uses PKI, some mecha-
nism allowing users to obtain a certificate upon authentication using a SAML assertion issued by
an Identity Provider. Such a service can be provided by a special kind of a certification authority
integrated into the federation, such as the on-line CA provided by the GridShib project.

The GridShib CA operates as an standard service provider in a federation. Users authenticate
against it using standard federation mechanism, with SAML assertions presented to the CA. These
attributes are used by the CA not only to decide whether a certificate can be issued, but also to
generate a set of X.509 extensions that are embedded into the certificate. The extensions can
be later used by services that are able to understand the SAML assertions for additional access
control decisions.

The GridShib CA operates entirely in a web world leaving all credential and key operations
on the web browser, which is quite convenient for the users. In the standard installation a Java
applet is used to perform the cryptographic operations. We also modified the code base to use also
the features that the Firefox and Internet explorer browsers provide for cryptographic operations.
These modifications simplify the use because no applets are needed any more. We have also
developed a GUI for MS Windows systems that simplifies obtaining and management of such
certificates [23].

5.3 Converting X.509 to Kerberos TGT

A lot of sites use Kerberos as their primary authentication mechanism and converted their services
to support Kerberos. Users on these sites therefore need Kerberos TGT to access local services,
including the very basic one such as user accounts or data storage. A mechanism converting X.509
certificates to Kerberos TGT’s is a desired feature when such site decides to contribute their
resources to a Grid community.

There is an IETF standard PKINIT [24] that specifies how public key cryptography can be
integrated with the initial authentication exchange of Kerberos to obtain a TGT. The first open
source implementation of the PKINIT was contributed by CESNET developers to the Heimdal
implementation of Kerberos. Current Heimdal implementation even supports proxy certificates on
the client side.

5.4 Converting Kerberos TGT to X.509

As described above, a lot of institutions use Kerberos as the primary authentication mechanism
and their users are accustomed to its use. When the user wants to access a Grid based on PKI,
they need to learn about digital certificates and private keys and how to obtain and manage them.
It would be much easier if they could get digital certificates transparently, using their Kerberos
TGT.

The situation is similar as with the SAML to certificate transition. In this case there are two
CAs supporting Kerberos authentication: Kerberos CA (kCA) [25] and MyProxy CA. kCA is a



specialized CA developed to support only this single transformation, while MyProxy CA can be
configured to support multiple source credential types. When MyProxy is used as an repository
of proxy certificates, the very same configuration can be used to access proxy certificates. The
advantage of the latter way is that users can use certificates issued by any CA.

5.5 Converting OTP to Kerberos TGT

For completeness sake we also mention the possibility to obtain a Kerberos TGT using OTP.
That possibility has been discussed by the IETF group responsible for Kerberos standardization.
An IETF draft describing protocol extension is available but to our best knowledge it is not
implemented yet by any Kerberos distribution.

As an alternative solution MyProxy PAM module together with PKINIT PAM module can be
used. Both modules were devoloped by the METACentrum. After successful authentication user
receives the proxy or common certificate from the MyProxy using OTP authentication this is done
by the MyProxy PAM module. The resulting certificate is then used by the PKINIT PAM module
which succeeds the MyProxy PAM module. PKINIT PAM module then contacts KDC, sends the
certificate and obtains user’s ticket. This whole procedure is completely transparent for the user,
she only see after successful authentication new proxy or common certificate and kerberos ticket
ready for use.

5.6 Transitive translations

In some cases a simple transition may not be sufficient, especially in complex environments with
extended workflows encompassing many services. Individual services, through which data flows,
may require different authentication mechanisms. In such case, a chain of transitions can be gen-
erated, making sure that each service is presented with a credential it expects.

A different possibility is to create several credentials at the moment of user’s first contact with
a system. User is able to submit appropriate credential to any service he needs; however, high risk
of compromise (theft) is associated with this approach.

6 Deployment in METACentrum

A detailed description of our deployment scenario will be described here

7 Conclusion

Authentication is the first step each user performs to access large scale data and computing
infrastructures. Also, individual grid components and services must authenticate to other ones,
using either their own identity or acting on behalf of a user. Using a single authentication protocol
like a PKI in a large heterogeneous grid may not be flexible and convenient—users may be forced to
use mechanisms they are not accustomed to and some legacy services may not be able to recognize
it. After an overview of basic authentication mechanisms used in nowadays grids, we discussed
approaches that can be used to increase the flexibility while keeping the high security standard.

The federated approach offers users to stay with their primary authentication mechanism
(usually the one provided by their employer) to access any federation enabled service. Coupled
with an on-line CA, the federated approach can be used to open PKI grids to users without long-
term certificate. Similarly, using certificates from the on-line CA it is possible to obtain a Kerberos
to access local services at an institution, etc.

The credential transition providers allows to build a framework for seamless and transparent
translation of user credentials between different authentication protocols. Users initiates their
grid access with an authentication method that best suits their actual requirements (e.g., a full
certificate from his or her own notebook and OTP when working from an Internet cafe) and
credentials required by individual services are created on the fly as needed.



We are working both on further development of the promising approaches and also in their
early deployment within the production grid infrastructure of the Czech national infrastructure
METACentrum.

In the future we plan to investigate possibilities proposed by the WS Trust standard [?], which
provides a unified way how credential transitions can be performed.

Acknowledgment

The work has been supported by the research intent “Optical Network of National Research and
Its New Applications” (MSM 6383917201) of the Ministry of Education of the Czech Republic.

References

1. Ylonen, T., C. Lonvick, E.: The Secure Shell (SSH) Authentication Protocol. IETF RFC 4252 (2006)

2. CVE-2008-0166: vulnerable random number generator in openssl on Debian-based systems http:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166.

3. ITU-T Recommendation X.509: Information technology—Open Systems Interconnection—The Di-
rectory: Public-key and attribute certificate frameworks (2005) http://www.itu.int/rec/T-REC-X.

509/e.

4. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastructure—Certificate and
Certificate Revocation List (CRL) Profile. IETF RFC 3280 (2002)

5. Ellison, C.: SPKI Requirements. IETF RFC 2692 (1999)

6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI Certificate Theory.
IETF RFC 2692 (1999)

7. Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel, M., Romberg, M.,
Schuller, B., Wieder, P.: UNICORE – From Project Results to Production Grids. In: Grid Computing:
The New Frontiers of High Performance Processing. Volume 14 of Advances in Parallel Computing.
Elsevier (2005)

8. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M.: Internet X.509 Public Key Infras-
tructure (PKI) Proxy Certificate Profile. IETF RFC 3820 (2004)

9. Kouřil, D., Basney, J.: A Credential Renewal Service for Long-Running Jobs. In: Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing (GRID 2005). (November 2005)

10. Novotny, J., Tuecke, S., Welch, V.: An Online Credential Repository for the Grid: MyProxy. In:
Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10).
(August 2001)

11. Basney, J., Humphrey, M., Welch, V.: The MyProxy Online Credential Repository. Software: Practice
and Experience (2005)

12. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authentication Service (V5).
IETF RFC 4120 (July 2005)

13. Neuman, B.C., Ts’o, T.: Kerberos: An Authentication Service for Computer Networks. IEEE Com-
munications 32(9) (September 1994) 33–38

14. Cantor, S.: Shibboleth Architecture—Protocols and Profiles http://shibboleth.internet2.edu/

shibboleth-documents.html.

15. Maler, E., et al: Bindings and Profiles for the OASIS Security Assertion Markup Language (SAML)
V1.1 (September 2003) OASIS.

16. GridShib: Project web page (April 2008) http:/gridshib.globus.org/.

17. ShibGrid: Project web page (April 2008) http://www.oesc.ox.ac.uk/activities/projects/index.
xml?ID=ShibGrid.

18. Haller, N.: The s/key one-time password system. IETF RFC 1760 (1995)

19. Haller, N., Metz, C., Nesser, P., Straw, M.: A one-time password system. IETF RFC 2289 (1998)

20. Lamport, L.: Password authentication with insecure communication. In: Communications of the
ACM. (1981)

21. Kuhn, M.: Otpw - a one-time passoword login package (2003)

22. M’Raihi, Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: Hotp: An hmac-based one-time pass-
word algorithm. IETF RFC 4226 (December 2005)



23. Kouřil, D., Matyska, L., Procházka, M., Kubina, T.: Kerberos and identity federations. AFS
& Kerberos Best Practices Workshop 2008 http://workshop.openafs.org/afsbpw08/talks/thu_2/

kouril.pdf.
24. Zhu, L., Tung, B.: Public Key Cryptography for Initial Authentication in Kerberos (PKINIT). IETF

RFC 4556 (2006)
25. Kornievskaia, O., Honeyman, P., Doster, B., Coffman, K.: Kerberized Credential Translation: A

Solution to Web Access Control. In: Proceedings of the 10th USENIX Security Symposium. (2001)


