
Virtualizing METACenter Resources Using Magrathea

Jǐŕı Denemark Miroslav Ruda Luděk Matyska

December 7, 2007

Abstract

Contemporary production grids do not usually offer the flexibility users are looking for.

While different user communities have often contradictory requirements on the operating sys-

tem, libraries, and applications, the production Grids provide only one rigid environment.

This rigidness can be overcome by virtualization, when every user community or even indi-

vidual user can be provided with its own instance of a virtual Grid, running optimized and

tailored operating system and services. The promise of higher flexibility of virtual Grids is

compensated by the increase in scheduling complexity. In this report, we present the Ma-

grathea system that extends the Grid resource management systems with support for virtual

environment. After discussing the design requirements, we introduce the Magrathea architec-

ture that consists of three components: the master and slave processes running on virtualized

resources and the cache process to provide the information about virtual machine state to

the scheduler. Two virtual machines sharing one physical resource and used exclusively, pre-

emption of a lower priority job running in a virtual machine, support for more than two

concurrently domains and support for “frozen” services that are repeatedly invoked and sus-

pended are the use scenarios discussed in the second part of the report. We demonstrate how

they are supported by the Magrathea system and what modifications to the Grid resource

management system are necessary. The Magrathea is currently in the pre-production use on

the Czech national Grid environment METACenter. This report is an extended version of

the paper called “Scheduling Virtual Grids: the Magrathea System”, which was presented at

VTDC 2007.

1 Introduction

Large-scale distributed computing and storage systems (Grids) already started to be used by many
scientific communities as indispensable tool supporting their research. Successful Grid deployment
attracts new communities, whose computing requirements and patterns of use differ from the
communities that initiated the Grid development and deployment. Also, as Grids are an object
of intensive research and development, many middleware systems are deployed, providing features
that suit different user groups.

Successful Grid deployment attracts also resource providers, who are interested in providing
new services and increasing both the number of users and their satisfaction. However, they face a
very difficult question of selecting the “right” Grid, that would be adequate for majority of their
users and at least acceptable for the remaining ones. As the production Grid environments like the
EGEE have very strict requirements on the installed operating system, libraries and the general
system environment, it is very difficult to merge this strict “no-choice” condition with the richness
of requirements of scientific communities.

Apart from the differences in middleware (and implied operating system requirements), the
user communities also differ in their expectations of the major Grid benefits. For the “founding
fathers” (esp. the high energy physics community) Grids are a place to store, share, and process
enormous amounts of data by rather simple (i.e., not highly parallel) jobs. On the other hand,
new users need support for large MPI jobs, require a fast turn-around for short jobs or are looking
to use Grids as a fabric to run services whose use varies over time, i.e., the physical resources are
not efficiently used but this is a price for having a low reaction time when the service is actually

1



called. The best effort service, treating jobs as having equal priority, is also not always sufficient
and different priority schemes are required by end users.

As the result of all these aspects, the current Grid production environments are too restrictive
for many potential users and the users are not motivated enough to “climb the wall”, although
otherwise the benefit of sharing computing resources and data among their collaborators is very
attractive.

A potential remedy is to virtualize the Grid environment. Through this process users will
get the illusion that they have access to a Grid which is optimized to suit their particular needs.
Precise versions and flavors of operating system, libraries, middleware and application can be
deployed with virtual Grids without any unexpected interference with environments (other virtual
Grids) deployed for other user groups (or even for the same group but for different application or
its version). Building virtual Grids over Virtual Machines (VM) [10] provides additional benefits
to this concept. The virtual machine provides almost ideal encapsulation of the whole operating
system and its components, including the Grid middleware. It can also be optimized to serve a
particular application (e.g., setting specific buffer sizes, using non-standard libraries etc.).

The encapsulation provided by the virtual machine makes it rather easy to offer additional
services. It is reasonably easy to dynamically change the basic physical resources (CPU, mem-
ory) allocated to the virtual machine. The virtual machine can be easily checkpointed, it can be
migrated to another physical resource, the image stored for later inspection or re-run. Virtual ma-
chines can be preempted, in a uniform way and without additional complexity due to applications
differing needs. While all these properties are best used on a single machine (i.e., with parallelism
limited to a single machine), the support for large parallel jobs is not excluded.

Deploying virtual Grids, running on a low level physical fabrics, requires new scheduling strate-
gies and tools. Several virtual machines can run concurrently on a single physical machine,
the resources allocated to individual virtual machines change in time, virtual machines may be
checkpointed—all these new features must be understood and taken care of by the Grid scheduling
system.

To serve these needs, we have developed a system called Magrathea to allow Grid job scheduling
systems to deal with several virtual machines running on a single computer and to submit correctly
jobs into those VMs. Magrathea is deployed in production environment on computational nodes
of METACenter1, which provides a computational infrastructure for various groups of users with
specific requirements and its resources are also provided for European grid infrastructure EGEE2.

2 Magrathea System

Scheduling in a virtual Grid environment depends on the way the virtualization is understood.
The simplest approach is to replace “job” with “virtual machine”, attach each job to its virtual
machine and schedule whole virtual machines in the same way as jobs. While simple and not
requiring any complex modifications to the scheduling system, this approach is also very limited
in using new features provided by virtual Grids. When deployed, it can also have a substantial
negative effect on the efficiency of the resource use—starting a job equals to booting a virtual
machine (part of the overhead can be mitigated using hibernated images, but still the startup
latency my be rather high). We decided to follow a different way, where the scheduler is at least
partially aware of the more complex environment of the virtual Grid and is therefore able to deal
with several virtual machines sharing the same physical one, with virtual machines that has been
suspended etc. The design requirements we considered are presented in the next section, followed
by the Magrathea architecture description.

2.1 Design Requirements

When designing the Magrathea system we started with the following set of basic requirements:

1http://meta.cesnet.cz/
2http://www.eu-egee.org/

2



• There are more active (i.e., running) virtual machines than physical resources. The resource
management system must schedule jobs to these machines exclusively, not overloading the
resources.

• As small as possible dependence on actual resource management system. While currently
used together with the PBSPro, the dependence must be clearly defined and new resource
management systems easily supported.

• No or just minimal changes or modifications of the resource management system. This
complements the previous item on making Magrathea a universal system not tied with a
particular resource management system only, as this would limit the usability of the Ma-
grathea system.

• Independence on system used for management of virtual machines (system used for VM
configuration, image preparation, booting etc.). Currently, we support virtual machines
started from pre-installed images, but we foresee cooperation with some management system
developed by other groups ([3, 2]).

• Independence on particular VM implementation.

To get better understanding of the relationship between Magrathea and the resource manage-
ment system we also devised three complementary use scenarios that must be supported by the
Magrathea system:

1. Exclusive use of the physical resource by one virtual machine at a time while supporting
concurrent active “wait” of several virtual machines on the same resource.

2. Sharing one physical machine between several virtual machines running concurrently and
assigning of resources (CPUs, memory) to virtual machines according requirements of jobs
running in these virtual machines.

3. Support for preemption of virtual machines, eventually extended with suspension and mi-
gration to different physical machine.

To represent different states of virtual machines, we introduced the Magrathea status of virtual
node. These new states are used to extend the view of Grid as used by the resource management
system (PBSPro in our case) for decisions made by the scheduler. The states are reported to the
resource management system directly by the concurrently running virtual machines. However, the
third scenario presented above requires further adaptation, as the checkpointed virtual machine
is not active and could not by itself report its state. Thus, it is the responsibility of Magrathea
extensions to keep track of these virtual machines and to activate them when necessary.

2.2 Architecture

Magrathea system consists of three main components: master process representing physical ma-
chines, slave processes running in each virtual machine and optional cache process, storing infor-
mation about status of all virtual machines running on a cluster. Architecture of Magrathea and
interaction with resource management system and virtual machine monitor is depicted in Figure 1.

In the simplest use case scenario, when single-node job is started on a free virtual machine,
communication between resource management system and Magrathea is as follows:

• When job appears in resource management system, it is task of the scheduler to select node
where job should run. This part usually includes getting information about the state of
all queues and nodes and selection of the node that fits best job requirements and has free
resources to run the job (the “node” can usually be a particular machine or a head-node
of a cluster with its local queue system). We do not modify this behavior, we only extend
the view of the Grid with which the scheduler is working with information provided by
Magrathea (to consider only virtual machines ready to accept new jobs).

3



Figure 1: The architecture of Magrathea

• Magrathea runs its daemons in each virtual machine. A master daemon is run in the
supervising Virtual Machine, to oversee all the virtual machines deployed. The slave daemon
runs in each virtual machine, to report its state to the master daemon. When job is submitted
to the virtual node, Magrathea slave daemon must be able to intercept this information. In
an ideal case, this is done before the job is actually started and slave contacts the Magrathea
master synchronously with the job submission.

• The master recomputes status of all virtual machines and performs all the necessary steps—
for example assigns resources (CPU, memory) to the virtual machine which will to run job.

• In rare cases, when the scheduler made its decision on a stale information or when the
virtual machine state changed after the status collection, the job may not be allowed to
start. This is checked by the slave process (it serves as a synchronization point in the case
of race conditions) and if a problem is encountered (i.e., the virtual machine is either in
non-accepting state or already running a different job), the startup is interrupted and the
job is returned to the scheduler to another submission attempt.

• When the job is finished, the slave notifies the master. The master recomputes status of
virtual machines supervised, changes mapping of resources to virtual machines and prepares
the node to accept new job(s).

More complex scenarios are described in the next section.
The master process, running in the supervising virtual machine, is responsible for the manage-

ment of virtual machines, their status recomputations, and assignment of hardware resources to
virtual machines. The master is also responsible for reporting status information about all virtual
machines to the cache process. To achieve independence on a particular virtual machine imple-
mentation, the master provides an interface to a virtual machine monitor so that specific actions
can be performed to activate and deactivate virtual machines, change resources dedicated to spe-
cific virtual machine etc. In the current implementation, master supports Xen [4] and VServer [5]
virtualization systems.

Magrathea slave process has three main tasks:

4



• Report to the master when job is started or finished. This information is used by the master
when computing status of virtual machines. In the current implementation, we use PBSPro
mechanism of prologue and epilogue scripts, which are called when the job starts and finishes,
resp.

• Accept commands from the running virtual machine (status query, suspend command).

• When notified by master, the slave starts scripts which must be run inside the virtual machine
(before or after domain is suspended or activated, before and after domain is preempted etc.).

Cache service stores status information of virtual machines and related data in a central
database. This component is optional, it is not required when resource management system is
able to get Magrathea status information directly from nodes. However, polling all worker nodes
may slowdown resource management system, therefore status cache may be used to improve per-
formance and scalability. We found that use of the status cache as the primary information source
for the PBSPro scheduler not only for the Magrathea status, but for other used metrics (other-
wise obtained by polling either the PBS Mom processes on nodes or other information services)
improves the overall responsiveness of the PBSPro system. In the current implementation, infor-
mation about actual disk space usage and memory usage is pushed by sensors from cluster nodes
to the cache and this information is later used by scheduler, too. We have also extended cache
service to be able to aquire (poll) information from Ganglia [8] and PBS. Cache processes can
also form hierarchy of information services, cache can be configured to push stored information to
upper-level cache or acquire information from other caches by polling.

2.3 Two static domains

In the first proposed scenario, several virtual machines (domains) are deployed on one physical
machine, but only one is allowed to run jobs in any particular time. This active domain is provided
with almost all resources (CPU and memory in current implementation), while all remaining
domains are also running, but with minimal resources. Inactive domains are provided with minimal
percentage of CPU time, but they still behave like live domains for resource management system—
they send monitoring information to the scheduler.

The individual states of each domain and their transition is depicted in Figure 2 for the case
of two domains sharing one physical resource. When the node is initiated, all domains start in the
free state. In this state, the virtual machine is able to accept a job, changing its state to running.
When one virtual machine becomes running, all the resources are allocated to it and the state
of all remaining domains is changed to occupied. If the running domain does not need all the
resources (e.g., it requires only two cores on a four core machine), other jobs can be send to the
same domain (virtual machine). When all jobs that run in a particular domain finish, all domains
become free again.

In the current deployment on METACenter, sharing of worker nodes between EGEE and
METACenter is implemented using this setup. On each worker node, two virtual machines pro-
viding METACenter and EGEE environments are installed and running. In both virtual machines,
standard PBS Mom (PBS monitoring daemon, which is responsible for job startup and monitoring,
but also for reporting node status to server) is running. While the same architecture, number of
CPUs etc. is published into PBS server, different properties describing different installed environ-
ments are published. This way, users may choose during submission whether they need nodes with
EGEE or METACenter environment. According to the user specified properties, jobs are routed
to appropriate EGEE or METACenter queues. It is possible to distribute the cluster un-evenly
between the two environments using limits set on queues.

Some modifications to the PBSPro setup have been necessary to support this scenario:

• Job prologue and epilogue must include call to the Magrathea slave. This feature is provided
by PBS, we only had to deploy our prologue/epilogue scripts.

5



Figure 2: States and transitions between them for statically deployed virtual machines.

• Configure PBS Mom to provide Magrathea status as dynamic resource (information is avail-
able inside virtual machine by querying the slave).

• PBS scheduler has to be modified to submit jobs only to domains with Magrathea status free
or running. In a simplest deployment, this can be achieved even without modification of the
scheduler (users may specify such requirement explicitly when submitting a job). However,
as we needed to modify the scheduler to support more complicated scenarios anyway, we
have implemented this feature directly as an extension of the PBSPro scheduler.

In the current setup, both EGEE and METACenter jobs are served by one PBSPro instance.
There is no requirement to use this configuration and the virtual nodes could be served by different
PBSPro installations (e.g., to increase a robustness or performance in a large Grid).

3 Complex Use Scenarios

In order to support the more complex use cases described in the previous section, the Magrathea
system must be extended to cope with the increased complexity. The necessary modification and
extensions are discussed in this section.

3.1 Preemptible domains

The second use case discussed involves preemption support. Again, two domains are running
on one node. While the first domain is the standard METACenter node, the second virtual
domain is dedicated to parallel jobs. When parallel job is submitted to the second, privileged,
domain, the first domain is preempted. The preemption is supported while the first, unprivileged
domain is still running, but stripped of most resources and almost all resources are given to the
privileged domain. However, the first domain remains alive, jobs are still visible as running for
PBS monitoring and PBS is not going to resubmit or cancel such jobs.

To support this behavior, three more states were added to those introduced in the previous
section: occupied-would-preempt, running-preemptible and preempted, see Figure 3.

In the current implementation, only single-node jobs are considered as preemptible (technically
there is no need for such limitation, but the scheduler had to be changed much more extensively
to support this behavior correctly). When a non-preemptible job is running in normal domain, its
status is running and high-priority domain is in occupied state and no jobs can be submitted to
this domain. However, if a preemptible job is running in a normal domain, its state is running-
preemptible and status of privileged domain is occupied-would-preempt. In this case, when a job is
started in the privileged domain, status of the normal domain is changed to preempted.

6



Figure 3: States and transitions between them for preemptible virtual machines.

To avoid starvation of preemptible jobs, Magrathea status contains not only status information,
but also length of preemption—number of seconds jobs were preempted aggregated for each virtual
node. This length of preemptions is used when scheduler selects new domain to be preempted.

While in the previous case no modification of PBS was necessary, in this case PBS scheduler
must be changed:

• Scheduler reads Magrathea status from the cache and schedules jobs with respect to the
domain status—a job can be submitted only to domains with status free, running, occupied-
would-preempt and running-preemptible.

• When the scheduler has more than one node capable to run a job, nodes are sorted using
length of preemption—the scheduler prefers nodes which will not preempt jobs and if not
available, the scheduler will prefer nodes with the smallest length of preemption.

• For parallel jobs, PBS Mom was modified to run different prologue/epilogue scripts on all
nodes—in standard PBS, prologue/epilogue scripts are started only on the first node.

• When the slave reports job startup to the master, more information about job is published
(number of CPUs and nodes used by the job).

• Queue dedicated to parallel jobs was created, with several constraints:

– Jobs from this queue could be submitted only to high-priority nodes, not to preemptible
nodes (nodes without Magrathea instalation can be used too).

– Only limited number of parallel jobs can be started in the same time, by the same user
etc.

7



• When a domain is going to be preempted, the Magrathea slave daemon may suspend jobs
if needed. In the current version, the slave checks memory usage of jobs. If there is danger
that the machine will swap extensively after the memory is reduced, the slave will send the
SIGSTOP signal to all processes belonging to suspended jobs. When the domain becomes
active again, the slave resumes all suspended jobs using the SIGCONT signal.

3.2 More than two running domains

Previous two use-cases can be combined, leading to the scenario where more than two domains
are ready to run jobs and a subset of these domains can preempt remaining domains. With
the limitation that at most one non-privileged domain can run jobs and at most one preempting
domain can be active, there is no need for further modifications. In such a case, all high-priority
VMs are marked as free or occupied-would-preempt as long as none of them is running any job.
When a job which is allowed to preempt other jobs arrives to a high-priority VM, the state of the
virtual machine which has been marked as running-preemptible (if there is such a VM) is changed
to preempted. States of other high-priority VMs are turned to occupied so that no other job is
allowed to be submitted on the particular worker node. When the privileged job finishes, the
preempted virtual machine is returned back into running-preemptible and all high-priority VMs
are marked as occupied-would-preempt.

To allow several virtual machines running jobs at the same time, Magrathea has been enhanced
to support CPU counting. This setup is used on our 16 core machines, when it is not suitable
to dedicate whole physical machine to one virtual machine only. During job startup, the slave
reports to the master number of CPUs used by this job. Master can recompute states of all
virtual machines, together with counters of CPUs used by each job in all virtual machines and
also number of free, not allocated, CPUs. Magrathea status contains not only state information
and length of preemption, but also number of CPUs allocated for this domain and number of free
CPUs available for new jobs submitted to this domain. PBS scheduler must be modified to use
this number of free CPUs instead of the one reported by PBS Mom.

This setup can be combined with preemption scenario, where subset of domains is marked as
high-priority domains, which are able to preempt standard domains. Each CPU can be either free,
used by a running job, or available only for high-priority domains as it was occupied by a virtual
machine which has been preempted. When a job is submitted into a virtual machine (either normal
or high-priority), CPUs required by the job are taken from a set of free CPUs. If the number of
free CPUs is not large enough to satisfy the job and the job was submitted into a high-priority
virtual machine, a master daemon tries to use CPUs which were occupied by preempted virtual
machines. Only when those CPUs cannot satisfy the job, another virtual machine is preempted.
In other words, normal and high-priority virtual machines can be running jobs at the same time
as long as high-priority jobs do not require all CPUs of a particular node. When a job finishes,
the master daemon tries to find and resume a preempted virtual machine which would be satisfied
with the CPUs that are no longer occupied by the job. Thus CPUs are marked as free only when
no virtual machine could make use of them.

In this case we use only CPU counting as memory requirements are hard to obtain before a job
is actually started. Because of this, CPU counting is really useful only for virtual machine monitors
which support dynamic sharing of memory between virtual machines, such as VServer. Using Xen
would require static partitioning of physical memory among all running virtual machines.

A set of states is the same as in the previous case, i.e., free, running, running-preemptible,
occupied, occupied-would-preempt, and preempted. Normal virtual machines are free when at least
one CPU is free, otherwise they are occupied. High-priority VMs are free only when at least
one CPU is free and no virtual machine which can be preempted is running. If a preemptible
virtual machine is running, all high-priority VMs are in occupied-would-preempt state to stress the
possibility that submitting a job into such VM may result in preempting another VM. A virtual
machine is occupied when no CPU (either free or freed by preemption) is available for this VM.

Because set of states is identical to the previous use-case, the only change in the PBS setup is
a modification of PBS scheduler, which must use number of free CPUs from Magrathea status.

8



Figure 4: States and transitions between them for frozen virtual machines.

3.3 Frozen services

The last use-case described in this report deals with suspended virtual domains in Xen. This is
a case of services, started by user, running for short time and then suspended by user request.
When service is later needed, this domain can be repeatedly resumed for a short time to perform
a high-priority computation.

Ability to suspend virtual machine adds one more state: frozen. In the current implementation,
jobs which can be suspended are submitted to domains which behave similarly to high-priority
domains in preemption scenario. When service domain is suspended (frozen), preemptible jobs can
be submitted to the normal domain, but when frozen domain becomes active again (is resumed),
normal domain is preempted (Figure 4).

Magrathea has to be extended to support suspend/resume commands. Suspend command can
be initiated either by the owner of job or by the administrator. Similarly, resume command can be
issued by the user of suspended job or by the administrator. Both commands are interpreted by
master daemon. Proper authorization has to be finished yet. Currently we support only limited
authorization, when only job owner or the administrator can suspend or resume a domain, and
only if one job is running in this domain.

9



On the PBS side, support for frozen domains require larger adaptation of PBS when comparing
with previous examples, because in this case also PBS server must be modified. In opposite to
all other types of domains, suspended domains are not accessible and PBS Mom cannot response
to monitoring requests from PBS server. Therefore we had to modify PBS server to check Ma-
grathea status of domains too and in case of suspended domains, monitoring of these domains is
deactivated.

4 Related work

Interesting features of virtual machines inspired several projects with aims similar to Magrathea.
Motivation for a project of physicists in Karlsruhe [9], sharing cluster between groups of users
with different requirements, is very alike to our first use. Although the initial motivation was the
same, their approach is different; they developed standalone service, managing jobs and nodes of
cluster. If job is planned to be started, new virtual machine corresponding to jobs is created by
this service. This approach is difficult to implement as it ends up with reimplementing most parts
of batch queuing system within the daemon.

Integration of Xen virtual machine monitor, Moab scheduler, and Torque resource management
system was described in DVC [1]. With help of Moab developers authors managed to provide
transparent creation of clusters of virtual machines. Virtual clusters are also allowed to span
multiple physical clusters by borrowing required resources from resource managers of the other
clusters. Main difference between DVC and Magrathea approach is level of integration – DVC
is tightly integrated with Moab/Torque and it also integrates image management system so that
each virtual machine is started from an image required by a job for which the virtual machine is
being created. As virtual machines in DVC are created and destroyed dynamically, a lot of work
had to be done to assure correct registration of new resources at all relevant parts of the system.
Results based of this approach were demonstrated also in a presentation [6], where different Xen
based virtual machines were used to run ATLAS (grid) and WestGrid (local) jobs, while parallel
MPI jobs were running in non-virtualized environment.

In our approach, Magrathea does not cover management of system images for virtual machines
and we do not expect a batch system to do this job either. Instead, existing systems, such as
Virtual Workspaces [2] or In-VIGO [3], can be used for that purpose. This separation not only
simplifies the design of Magrathea but also makes sharing resources among several batch systems
easier as it reduces the number of changes to those batch systems.

5 Conclusions and Future Work

In this report, we have described system Magrathea, which allows us to run virtual nodes on
a cluster. Nodes are managed by slightly modified PBSPro. Magrathea provides possibility to
run different Linux flavors on one cluster node and switch between them dynamically, gives us
possibility to preempt sequential jobs and therefore improves support for large parallel jobs on
our cluster. We have also described two new extensions, providing ability to run several active
domains concurrently on VServer enabled nodes and ability to suspend jobs on Xen enabled clus-
ters. Magrathea is deployed in production environment on computational nodes of METACenter.
First two described scenarios are used in production, providing sharing worker nodes between
METACenter and EGEE and improved support for parallel jobs. Next two scenarios will be
deployed in production after current implementation is verified by more extensive tests.

The overhead of Magrathea can be observed when jobs are started or stopped. We have made
some measurements on our production cluster using Xen virtual machine monitor and the overhead
of Magrathea showed to be negligible concerning the time consumed by a job itself. When a job
is being started, Magrathea needs about 1.2 seconds to verify the request and to assign memory
and CPU power to a particular virtual machine. When another virtual machine was previously
running, memory must first be removed from it. This takes additional time, which depends on the

10



amount of data that has to be swapped out to free occupied memory. In case no job is running in
the second virtual machine, it takes approx. 2.6 seconds to reassign the memory. Virtual machines
which are not running any jobs get only a small amount of CPU power, so that running jobs are not
slowed down. However, reduced CPU power does not have serious impact on responsiveness of idle
virtual machines. They are still able to answer requests from PBS server. We have measured this
using a standard ping tool. Round-trip-time varies more for idle virtual machine with restricted
access to CPU power, but it is still negligible. The values are (minimum RTT, average RTT,
maximum RTT, standard deviation) 0.3 ms, 0.5 ms, 0.7 ms, 0.1 ms for running virtual machine
and 0.2 ms, 6.0 ms, 87.4 ms, 15.5 ms for idle VM.

The implementation is general enough to support both VServer and Xen virtual machine
implementations. Even if Magrathea is currently supported only by our PBSPro modifications, we
believe that at least first three use cases could be easily integrated with other resource management
systems too.

In future work, we would like to investigate migration of virtual domains and enhance Ma-
grathea to support such use-case. We also started cooperation with researchers in scheduling
area to develop new scheduler, which will be able to utilize benefits provided by virtualization,
especially preemption and migration.

Acknowledgments

This project has been supported by research intents “Optical Network of National Research and Its
New Applications” and “Parallel and Distributed Systems” (MŠM 6383917201, MŠM 0021622419).

References

[1] W. Emeneker, D. Jackson, K. Butikofer, D. Stanzione. Dynamic Virtual Clustering with
Xen and Moab. In Frontiers of High Performance Computing and Networking – ISPA 2006
Workshops, Springer-Verlag LNCS 4331, 2006.

[2] K. Keahey, K. Doering, and I. Foster. From Sandbox to Playground: Dynamic Virtual En-
vironments in the Grid. In: 5th International Workshop in Grid Computing (Grid 2004).
2004.

[3] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M.
Tsugawa, J. Zhang, M. Zhao, L. Zhu, X. Zhu. From virtualized resources to virtual computing
Grids: The In-VIGO system. Future Generation Computer Systems 21,2005.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In ACM Symposium on Operating Systems
Principles (SOSP). October 2003.

[5] Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier and Larry Peterson.
Container-based Operating System Virtualization: A Scalable, High-performance Alter-
native to Hypervisors. April 2007. http://wireless.cs.uh.edu/presentation/2006/07/
Container.pdf.

[6] Sergey Chechelnitskiy. Running CE and SE in a Xen-virtualized environment. Presented on
CHEP 2007 conference.

[7] Jǐŕı Denemark and Miroslav Ruda. Magrathea: Enabling New Applications Using Cluster
Virtualization. Submited to conference Virtual Execution Environments 2008.

[8] Matthew L. Massie, Brent N. Chun and David E. Culler. The ganglia distributed monitoring
system: design, implementation, and experience. In Parallel Computing Volume 30, Issue 7.
2004. pages 817-840.

11



[9] V. Büge, Y. Kemp, M. Kunze, O. Oberst, and G. Quast. Virtualizing a Batch Queuing System
at a University Grid Center. In Frontiers of High Performance Computing and Networking –
ISPA 2006 Workshops, Springer-Verlag LNCS 4331, 2006.

[10] Mendel Rosenblum and Tal Garfinkel. Virtual Machine Monitors: Current Technology and
Future Trends. Computer, 38(5):3947, 2005.

12


