CESNET Technical Report 2/2008

Multiple Ligand Trajectory Docking Study -
Semiautomatic Analysis of Molecular
Dynamics Simulations using EGEE gLite
Services

ALES KRENEK, MARTIN PETREK, JAN KMUNICEK, JIRI FILIPOVIC,
ZDENEK SUSTR, FRANTISEK DVORAK, JIRI SITERA, JIRI WIESNER,
LUDEK MATYSKA

Received 26.2.2008

Abstract

Interactions between large biomolecules and smaller bio-active ligands are usually studied
through a process called docking. Its aim is to find an energetically favorable orientation
of a ligand within an active site of a biomolecule. Active sites are places where a chemical
reactions take place and the role of the ligand is either to speed up, slow down or change
the reaction (e.g., an enzyme catalyzed hydrolysis), which is why it can have huge phar-
maceutical or other commercial impact. We present a tool allowing to effectively manage
and control typical workflow of docking parametric study. Selected subsets of ligands
and protein trajectory snapshots can be displayed in three different views and further an-
alyzed. Finally, the application supports spawning and steering underlying computations
running on the Grid.

Keywords: Achetylcholinesterase, Docking, Enzyme, Ligand, Molecular Dynamics,
Job Provenance, Grid middleware, Grid infrastructure

1 Studied Problem

1.1 Docking Search

The docking search for biomolecular complex structure is done on snapshots taken
from the molecular dynamics trajectory describing the dynamic behavior of the
biomolecule. Each snapshot is a specific structure the biomolecule has at a spe-
cific time (a frozen structure). For each snapshot, we calculate the best position of
the ligand (i.e., the orientation where whole system does have the lowest energy).
This is repeated for each ligand we investigate and, in the end, we receive a matrix
containing energies of snapshot/ligand interactions. The lowest energy shown in
this matrix is the primary result of such a study, but the whole matrix is of impor-
tance as it provides insight into the dynamics of the interaction.

The creation of such a matrix is, from the computing standpoint, a very de-
manding task. Furthermore, the researchers need assistance managing its complex-
ity (to be sure the whole matrix is computed and no element forgotten). A sophisti-
cated job submission system coupled with an archive (a provenance) of jobs already
run is a necessary prerequisite for such studies.

© CESNET, 2008



2 ALES KRENEK ET AL.

1.2 Specific Usecase

Figure 1. Three dimensional view of the secondary structure elements of human
acetylcholinesterase as obtained from RCSB Protein database (code 1B41,
colored by chains).

Nowadays, there are many organophosphate compounds, nerve paralytical sub-
stances (as sarin, soman, tabun, VX etc.) and pesticides, with ability to affect hu-
mans toxically. This effect is performed by irreversible inhibition of the acetyl-
cholinesterase enzyme (AChE; EC 3.1.1.7) - serine hydrolase - that is crucial for
the correct function of the human nerve signaling system (transmission of nerve
signals across gaps between nerve cells). Acetylcholinesterase [1] is one of the most
important enzymes in many living organisms, including humans and vertebrates,



Multiple Ligand Trajectory Docking Study 3

and is found in the nervous system and in muscles.

AChE playes a key role in nerve signal transmission as its inhibition can lead
to the very fast death of an organism (see Figure 1). AChE is responsible for regu-
lating acetylcholine concentration during nerve signal transmission. In the central
and peripheral nervous systems, nerve signals are usually transmitted by the acetyl-
choline neurotransmitter. The transmission is terminated by the cleavage of acetyl-
choline by AChE directly in the synaptic gap. A reactivation process whereby the
catalytical potency of the inhibited enzyme can be restored, has been known for a
long time. The reactivation procedure results in a free active enzyme that can play
its physiological role again and a complex of AChE reactivator-inhibitor that is sub-
sequently removed by the organism through detoxification. Unfortunately, there
is no universal reactivator able to reactivate AChE enzyme inhibited by the most of
commonly used nerve agents. Therefore, we attempt to study structural and ener-
getical aspects of the reactivation process by means of computational chemistry to
find suitable generic reactivators able to liberate AChE poisoned by nerve paralytic
compounds.

In this study, we have investigated the interaction between acetylcholinesterase
participating in nerve signal transmission, and a set of organic aromatic compounds
that could serve as reactivators. We focuses on a detailed investigation of reactiva-
tors binding (through both weak van der Waals and electrostatic interactions) into
the acetylcholinesterase active site. The actual problem shown here deals with a 2-ns
acetylcholinesterase trajectory and 3 ligands, requiring approx. 6000 CPU hours on
an average computing server. In reality, such studies use more and longer trajecto-
ries (tens of ns) as well as a higher number of potential ligands (tens to hundreds).
Such a computation is unmanageable without semi-automatic support tools.

1.3 Application Software Used

The molecular dynamics trajectory of the acetylcholinesterase was calculated using
molecular dynamics programs from the AMBER package, the docking procedure
itself was carried out by DOCK'. VMD [2] was used to allow visual inspection of
the resulting biomolecular complexes using our in-house visualization plugin.

2 Analysis Automation

The whole docking study is run from a custom graphical desktop application
(or workbench, or dashboard ...) shown in Fig. Figure 2. It was designed under
tight cooperation with NCBR? (National Centre for Biomolecular Research), re-
searchers to suit their typical workflow for day-to-day analytical work, and — grad-
ually — to take care of all common tasks performed, up to now, manually.

As the first step, the application supports the selection of the working domain
for the current session, i.e., subsets of both trajectory snapshots and specific ligands.
Then it queries the underlying Grid services and local job repository (Section 3.4.2),

! http://dock.compbio.ucsf.edu/
2 http://ncbr.chemi.muni.cz



4 ALES KRENEK ET AL.

m Multiple Cigand Trajectory Docking = @
Receptor name: acetylcholinesterase (1N5M), (guid:93f77 eba-beb4-482c-99ff-e5e52de2alds), Docking jobs ver.: demo, Snapshot/ligand jobs ver.: demo
HOX HBP OBl — Radius Grid size Flexibility Energy = | Rank Comme
1 O 010 o 601 S : e ’
Aborted 1.4 0.3 flexible -64.957024
101 O 010
done/CK 1.4 0.3 flexible 82 Look at
201 o 210 O 010 O 1l {2l
301 o 100 O 010 @ 020
401 @ 210
o @ o O o
601 O 0,10 [ \ 2l
=i O 010 O 0.1 @ 110 Vlsuahse| Annotate Job | Submit Job
801 O 010 O 0410 | Parameter |Va\ue —
Joh id https:/fskurut6s-1.cesnet.cz:9000/dYWrr
01 O 110 Job owner /DC=cz/DC=cesnet-ca/C=University of W [
1001 ( ° ) 201 @ 110 o 010 || receptorMame 1HEM
receptorURI guid:93f77 eba-beb4-482c-99ft e5eb2de2al
101 O 110 O 010 O 110 ligandName HOX
o Q) 110 O 011 ligandURI guid:83303b33-62b8-41 cc-a96F-c29a2a45
snapMumber 1001
1301 O 010 snapURI quid: aa15d8hd-2335-4ffa-BbaT-6338c4e02
e O 0410 o 100 5 snapTime 1201.000
dockSurfaceProbeRadius 1.4 =l
(®) Show Johs () Show Metrics () Show Annotations ] [ 0
= —
| e ee g Ite nliiri 4 @Eeﬁesh ﬂguit

Figure 2. Basic layout of the graphical application. The left pane is a view on the
snapshot vs. ligand array (both “middleware” and “application” views are
shown), the top-right pane shows individual jobs falling into the selected
array cell, and the bottom-right pane displays details of the selected job.

and displays a 2D array of Grid jobs (including prepared, running, and finished
jobs) matching the criteria. Three viewing modes (left pane in Figure 2) of the
array are provided:

— Middleware oriented: shows the number and status of Grid jobs falling to each
array cell (green — finished successfully, red - failed, yellow — being processed).

— Application metrics: a significant numeric value (binding energy in this case)
computed by each of the jobs is mapped to a color-scale representation, giving
an immediate insight in its distribution over the working domain.

— User rank: similar to the previous one but assigned manually by users as a result
of their expert assessment of the outcome of the computations.

The use of Grid services, rather than local and private user job repository, adds
an important feature —sharing the results and assessments among all users of a collabo-
rating team. Jobs (and their results) submitted by one user are immediately visible
to all members of the team (obviously respecting security restrictions; the users have
to set appropriate permissions). In this way, results are shared easily and duplicate
computations can be avoided.

A typical user session starts with selecting the work domain (as described above).
Then, results of finished jobs can be examined in detail, including three dimensional
visualization of emerging complex 3D structures. Batches of jobs can be prepared



Multiple Ligand Trajectory Docking Study 5

in order to fill empty cells of the array to complete overall docking analysis. Also,
existing jobs can be used as templates, cloned, and re-run with modified input pa-
rameters.

Finally, the user can mark each job with a numeric rank (which is visualised
with color scale in the “user rank” view described above) as well as a free-form text
annotation recorded and visible to the others. For example, a job which achieves
good (low) binding energy (the application metrics) can be annotated “good energy
but due to apparently faulty computation” and assigned bad user ranking in order
to exclude it from further considerations.

The description confirms that the application is designed specifically for solv-
ing this class of scientific problems. This was done intentionaly. In this case we do
not believe in the “one size fits all” paradigm; requirements of different user commu-
nities can be rather diverse, and trying to design a generic application would yield
an over-complex, cumbersome implementation. On the other hand, with the use
of the Grid services in the background, the application is exteremely lightweight.
After the design was agreed upon, the actual coding required only approx. two
person-weeks of a skilled programmer.

3 Underlying Grid Services

3.1 Charon Extension Layer — Managing Job Submission

The Charon Extension Layer toolkit [3] is a universal framework creating a layer on
top of the basic Grid middleware environment and making the access to the com-
plex Grid infrastructure much easier compared to the native middleware. It pro-
vides a command-line oriented interface and is intended for users who require full
control over their running computational jobs. CEL provides uniform and modular
approach to complex computational job submission and management, and forms
a generic system for the use of application programs in the Grid environment in-
dependently of Grid middleware present at the specific fabric infrastructure. CEL
can be easily used for powerful application management enabling single/parallel
execution of computational jobs without job script modification. Simultaneously,
standard job management involving easy job submission, monitoring, and result
retrieval can be performed without any additional hassle or requirements put on
users.

The complete Charon Extension Layer combines two distinct subsystems — the
Module System and the Charon System. the Module System is used to manage
available application portfolio. It solves problems related to the execution of ap-
plications on machines with different hardware and/or operating systems, and it is
also capable of simplifying the execution of applications in parallel environments.
The Charon System is a specific application managed by the Module System that
introduces a complete solution for job submission and subsequent management.



6 ALES KRENEK ET AL.

3.2 glLite Job Processing

The only way the user can access computational resources in gLite middleware? is

through a job. Despite not completely restricted to, gLite is designed to support a
large number of traditional batch, non-interactive jobs.

Upon creation, the job is assigned a unique immutable job identifier (jobid).
The jobid is used to refer to the job all the time during the active life of the job and
afterwards.

The user describes the job (executable, parameters, input files etc.) using the
Job Description Language (JDL) [7] based on the extensible Classified Advertisement
(ClassAd) [5] syntax. The description may grow fairly complex and include in-
formation on execution environment-related requirements, proximity of input and
output storage, etc.

Job processing can be summarized as follows (denoting gLite components in
italics):

— the job is submitted via the User Interface (simple command line tools)
— the Workload Manager (WM) [] queues the job and starts looking for a suitable

Computing Element (CE) to execute it

— the job is passed to the chosen CE and runs there

— as a part of its processing, the job may download inputs from Data Management
services [ | as well as upload its main results there to be stored permanently

— after completion, the user can retrieve miscelaneous (volatile) job output di-
rectly

— all the time, the job is being tracked by the Logging and Bookkeeping (L&B)
service [10], which provides the user with information on the job state and
further details of job processing

— after the user retrieves the job output, the middleware data (namely the job
trace in L&B) on the job are passed to job Provenance (JP, Section 3.3) and
purged from their original locations

— annotations can be added to the job during its active lifetime via L&B (even
from the inside of running applications), or any time afterwards via JP.

3.3 Job Provenance — Archiving the Data

The need for a Grid middleware service that would help users track their jobs, store
the information for a long term, allow adding further annotations, and, finally, pro-
vide efficient querying capabilities, was the primary motivation for developing the
Job Provenance (JP) Service.

Pragmatic implementational requirements on JP, given its main purpose, are
rather contradictory. Information on each job should be sufficiently detailed in or-
der to allow job re-execution, while the data gathered should be stored for a long
time. This implies ever growing storage space requirements that must be kept rea-
sonable by making job records as compact as possible. The EGEE project aims at
1 million of jobs per day; quantitative assessments of implications in JP, as well as
deployment considerations, are given in [10]. At the same time, efficient queries

3 http://glite.web.cern.ch/glite/



Multiple Ligand Trajectory Docking Study 7

are required, which is virtually impossible with such a huge number of compact
records. Finally, JP has to be able to cope consistently with long-term evolution of
various data formats.

The overall JP design tries to keep these requirements in a reasonable balance.
This section provides an overview. Further details can be found in [6].

3.3.1 Data in JP and Their Organization

In JP, data are organized primarily on a per-job basis, a concept following the L&B
model. Every data item stored in JP is associated with an actual Grid job. The
following data are gathered from the Grid middleware:

— job inputs, directly required for job re-running: complete job description (the
JDL record) as submitted to the WM system (WMS), and miscellaneous input
files (gLite WMS input sandbox) provided by the user (however, job input files
from reliable remote storage are not copied to JP; this would not be feasible in
a large scale)

— job execution trace, documenting the job execution environment — complete
L&B data, that is when and where the job was planned and executed, how
many times and for what reasons was it resubmitted, etc. This also includes the
results of “measurements” taken on computing elements, for example versions
of installed software, environment settings, etc.

— job annotations — the JP service allows users to add arbitrary annotations to jobs
in the form of “name = value” pairs. These annotations can be recorded either
during job execution, or at any time afterwards. Besides providing information
on the job (for example that it is a production-phase job of a particular experi-
ment), these annotations may carry information on relationships between jobs
and other entities such as external datasets, forming the desired data prove-
nance record.

Figure 3 shows the data flow channels from Grid middleware components (gLite)
into JP.

In order to overcome the diversity of various data formats as well as their long-
term evolution, to provide further extensibility, and to unify the handling of differ-
ent data, the JP concept distinguishes between the following views on the data:

— Raw representation — the physical data received and stored in JP. There are two
input and storage modes in JP:

 Small size tags, expressed as “name = value” pairs, enter the system via its
primary interface (a web service operation in the current implementation).
“Value” is assumed to be a literal without any structure that JP should be
aware of.

o Bulk files, typical example is the complete dump of L&B data or the job
input sandbox, are uploaded via a suitable transfer protocol. Files are sup-
posed to be structured. However, they are stored “as is”, and upon upload
they are annotated with format identification, including the version of the
format. JP allows installing plugins that handle particular file formats (see
below) understand the file structure, and extract required information.



8 ALES KRENEK ET AL.

Job life cycle

Job Provenance (JP)

Annotate

b
1 JP Primary Storage
Computing Record “measurements” \: Primary Storage
Element i front-end
Register / .
ob X
User Submit Logging & Retrieve
Interface Bookkeeping raw files
m
LB dump
Submit N
Workload Upload sandbox | Primary Storage
Manager > back-end

Figure 3. Data flow into gLite Job Provenance

— Logical view is an abstract level used to manipulate JP data, and it is the preferred
way for the most of JP operations (queries are specified in terms of attributes
of the logical view). The following list summarizes the basic ideas:

 All data are expressed by attributes at the logical level. A job attribute has
a unique name and may have multiple values for a single job. The attribute
name must be fully qualified with a namespace (its schema can be specified
and enforced) in order to ensure extensibility and uniqueness.

 Explicitly recorded tags (user annotations) map to attributes in a straight-
forward way, name and value of a tag becoming name and value of an
attribute.

o An uploaded file is usually a source of multiple attributes, which are “di-
gested” from the file based on knowledge of a particular file structure and
semantics. For example, the L&B dump file provides attributes such as job
submission and completion time, number of resubmits, CE where the job
ran, etc.

 The “digest” process extracting attributes from raw data files is implemented
through 7P plugins. The task of a plugin is to parse a particular file type
and provide calls to retrieve attribute values. JP defines a fixed plugin API.

3.3.2 JP Components

JP provides two classes of services: a permanent Primary Storage (JPPS) accepts
and stores job data, while the possibly volatile and configurable Index Servers (JPIS)
provide an optimized querying and data-mining interface for the end-users (see Fig-
ure 4). The relationship between JPPS and JPIS ranks as many-to-many — a single



Multiple Ligand Trajectory Docking Study 9

JPIS can query multiple JPPS’s and vice versa, a single JPPS is ready to feed mul-

tiple JPISs.
JP Primary Storage | | JJ

Primary Storage JP Index Server feed JP Index
front-end > Server
- | ¥, K
7} SR
~N
\\ Get
i S _jobinfo Lookup
Retrieve No
raw files NS

~N
~
~
~
~N
N
~
~

Primary Storage Get files @ .
back-end €« ——————m———— s ] JP Client

Figure 4. Job Provenance components

Primary Storage

A single instance of JPPS, shown in Figure 4, is formed by a front-end expos-
ing its operations via a web-service interface [8], and a back-end responsible for
actual data storage and providing the bulk file transfer interface using arbirtrary
file-oriented transfer protocol(s). Both the front- and back-end share a filesystem so
that the file-type plugins linked into the front-end access their files via POSIX I/O.

JPPS operations fall into the following categories:

— Job registration. Each job has to be explicitly registered with JP. Currently the
registration is done transparently by the L&B server upon job submission (in
parallel with the job registration in L&B, though not blocking the job submis-
sion).

— Tag recording. Add user tags (annotations) in the “name = value” form to JP job
records.

— Bulk file upload. File properties (type, optional name etc.) are specified via
the front-end interface, the upload itself goes directly to the back-end (using
gridftp transfer).

— Index Server feed allows JPIS to ask for batch feed as well as register for incre-
mental updates.

— Data retrieval. 'The only direct data retrieval supported by JPPS is keyed by the
jobid. Both individual attributes and the whole files can be retrieved.

Primary Storage covers the first set of requirements specified for the Job Prove-
nance — storing compact job records, allowing users to append annotations, and
providing elementary access to the data.

The current implementation uses the MySQL relational database to store basic
job metadata and a Globus gridftp server as the back-end.



10 ALES KRENEK ET AL.

Index Server
The role of Index Servers (JPIS) is to process and re-arrange the data from Pri-
mary Storage(s) into a form suitable for frequent and complex user queries. A typ-
ical interaction is shown in Figure 4, consisting of following steps:
1. The user queries one or more JPISs, receiving a list of IDs of jobs matching the
query.
2. JPPS is directly queried for additional job attributes or URLs of stored files.
3. The required files are retrieved.

The querying language is intentionally restricted in order to allow efficient im-
plementation of the query engine. The current format of the query is a list of lists of
conditions. A condition is a comparison (less, greater, equal) of an attribute value
to a constant. Items of an inner list must refer to the same attribute and they are
logically OR-ed. Finally the inner lists are logically AND-ed. According to our ex-
perience with the L&B service, this query language is powerful enough to satisfy
user needs while simple enough to allow efficient processing.

For example, to query all jobs named “dock”, executed with a “flexible” param-
eter, and ran on Monday or Tuesday:

(program="dock") AND
(param="flexible") AND
(day="Monday" OR day="Thuesday")

JPIS provides the following operations:

— User queries — it is the primary interface for end users as described above. A query
specifies a set of attributes to be retrieved and conditions determining the set
of matching jobs.

— JPIS-FPPS communication — implements the data flow from JPPS to JPIS. Each
JPIS can subscribe to JPPS according to its configuration to receive data match-
ing the configuration or just ask for data matching the configured criteria.

— Administrative — calls to change JPIS configuration without interfering with its
normal operation.

Index Servers are created, configured, and populated semi-dynamically accord-
ing to the needs of a particular user community. The configuration consists of:

— one or more Primary Storages to contact,

— conditions (expressed in terms of JP attributes) on jobs that should be re-
trieved,

— list of attributes to be retrieved,

— list of attributes to be indexed — a user query must refer to at least one of these
for performance reasons.

The set of attributes and the conditions specify the set of data that is to be re-
trieved from JPPS, and they reflect the assumed pattern of user queries. The amount
of data fed into a single JPIS instance is assumed to be only a fraction of data in
JPPS, both regarding the number of jobs, and the number of distinct attributes.

The current JPIS implementation keeps the data also in a MySQL database. Its
schema is flexible, reflecting the server configuration (columns are created to hold
particular attribute value, as well as indices). Currently all attributes are handled



Multiple Ligand Trajectory Docking Study 11

as strings, however, we are considering type-extension mechanisms that would al-
low processing complex attribute types, as well as adding further operators besides
simple comparisons.

3.4 Application specific configuration and issues

3.4.1 Job Types

The analysis described in Section 2 requires running computational jobs of three
classes:

— Snapshot preparation. 'The job extracts a given snapshot from the Molecular Dy-
namics (MD) trajectory, stores the data file in permanent storage, and records
information on the snapshot (namely the trajectory name, snapshot number,
data file location at the permanent storage, and several characteristic numbers
such as its internal energy) into JP.

— Ligand preparation. The job performs ligand optimization, stores datafile in
permanent storage, and records information on the ligand (its name, data file
location, and several characteristics) in JP.

— Docking. These jobs do the actual docking computation. First, information on
the job inputs is recorded into JP in order to make the job visible in the array
immediately after submission. Then, required input files are downloaded, and
the dock executable is invoked using specified parameters. Finally the results
of the docking computation are uploaded, and metadata describing the result
(data files location again, and characteristics of the solutions) are stored in JP.

Appendix A provides a complete list of JP attributes attached to these job types.

The first two classes of jobs are expected to be run once in a batch, as an initial
step of the whole analysis. They determine a possible working domain. However,
the domain can be extended later with adding more snapshots and/or ligands (by
runnig more of these preparatory jobs).

On the contrary, the docking jobs are run routinely during the analysis. Those
are the jobs that are submitted by the graphical front-end and managed in the local
job repository.

3.4.2 Local Job Repository

Grid services exhibit certain intrinsic but rather user-unfriendly properties, namely
asynchronous behaviour, unexpected failures, and slow response to operations.
Therefore, it is desirable to shield the user from this behaviour with suitable wrap-
ping of the services. On the other hand, it makes little sense to provide such wrap-
ping with an additional service; the same problem would occur, just in a different
location. On the contrary, we address the issue locally, with data stored and auxil-
iary programs running solely on the machine where the user graphical front-end is
run.

The complexity and eventual failures of job submission and job output retrieval
are handled by the Charon system (Section 3.1). The system uses a per-job ded-
icated working directory where various job metadata are stored. We extend this



12 ALES KRENEK ET AL.

approach by adding further metadata files that control interaction with JP. Within
this metadata storage, a job is handled in the following steps:

1. On job submission, the graphical user interface calls a library function that
creates a dedicated job directory, stores all job parameters there, and creates
initial metadata. The semantics of the library call is completely local, it returns
immediately, not being affected by eventual unavailability of Grid services.

2. Alocal daemon starts checking the directory periodically. The job is submitted
(via Charon).

3. After successful submission, job JP data which are known at that time (e.g.,
snapshot number and ligand name) are stored into JP to be available for queries
immediately.

4. After successful job completition, its miscelaneous output is retrieved, and the
job protocol(see Appendix C) is uploaded to JP.

Steps 3 and 4 are prototype implementations only. In the planned full JP in-
tegration, the job input data for JP (step 3) will be included in the job description
and stored in JP automatically by the middleware services. Similarly, the job de-
scription will denote the protocol file name and it will be uploaded to JP as a part
of the job clean-up procedure.

Besides handling the job processing, the local repository serves as a backup
backend for queries called by the graphical front-end. Therefore, the user can see
job-related data immediately after its submission through the GUI (even if the job
has not been submitted to the Grid yet). This also means that the operation of the
GUI is not critically affected by the unavailability of Grid services (information on
other users’ jobs is not visible in such case).

3.4.3 Service Configurations

Besides standard configuration of gLite services, the following specific items have
to be addressed:

— Lé&B interface to JP: The L&B server used for the analysis must be configured to
propagate job registrations and upload finished job data to JP Primary Storage.
(This is supported by standard configuration but not enabled by default).

— JP Primary Storage plugin: the jobs upload docking protocol to JP. It may be
used to extract many of the job attributes. A specific plugin* performing this
extraction must be installed.

— JPindex server configuration must support all the queries of the graphical front-
end. Details are given in Appendix B.

3.5 Run Infrastructure

The complete set of application services together with the graphical interface were
developed and implemented in the subset of EGEE grid infrastructure — Virtual Or-
ganization for Central Europe (VOCE). VOCE [9] is a dynamic, multi-institutional
community established by resource providers within the Central Europe region (the

4 http://lindir.ics.muni.cz/dg_public/cvsweb.cgi/uf07/dock_plugin



Multiple Ligand Trajectory Docking Study 13

CE Federation in the EGEE terms). It directly supports CE researchers by provid-
ing the storage and computing services. VOCE uses the gLite Grid middleware as
provided by EGEE to support data sharing and computational resources within the
CE. It also provides a platform on which other Grid and application software can
be installed and used to solve various types of computational or data-intensive jobs.

Unlike majority of other virtual organizations, VOCE tends to be a generic vir-
tual organization (VO) providing application-neutral environment especially suit-
able for Grid newcomers allowing them to quickly acquire initial Grid computing
experience and to test and evaluate Grid environment towards their specific applica-
tion needs. VOCE environment is also suitable for small groups for whom creating
and maintaining their own VOs may represent too much overhead.

The primary goal of VOCE is to provide an environment where new and “small”
end user groups can use a production level Grid, adapt existing or develop new ap-
plications, and prepare themselves to eventually start their own VOs. Its secondary
goal is to provide an environment where new middleware services can be introduced
in a fast way, including services developed by the EGEE CE partners independently
of the main-stream gLite development.

4 Conclusion

Scientific experiments, even those carried in a pure computational environment, re-
quire very precise recording of the experiments, both of their setup and results. This
is even more critical for parametric studies, where similar experiments/computations
are carried on a large multi-dimensional domain of possible inputs.

We present a semi-automated approach to managing such records using avail-
able Grid services of the gLite middleware and the Charon Extension Layer toolkit.
Besides keeping the records for an individual user, the approach also strongly sup-
ports collaboration in a user group. On the other hand, the user is shielded from
the complexity of the Grid where desirable.

To demonstrate the feasibility of these ideas, we have developed a special-
ized graphical interface for solving generic biomolecular parametric jobs. It allows
user application metrics evaluation based on targeted parameters with potential
extension for extensive biomedical screening. Following features are available as
standard services: computational jobs manipulation (input modification, jobs re-
submission), targeted search and selection of desired jobs (finished, non-finished,
aborted). Moreover, the whole application is based od modular approach allow-
ing incorporation of application-specific plugins for the presentation of results (e.g.
visualization).

Currently, the prototype is being used by users at the National Centre for
Biomolecular Research (NCBR), and it is being further extended according to their
requests. We have also successfully demonstrated its use during the EGEE User Fo-
rum conference’.

This study demonstrates the usability of the gLite software stack to deal with
complex computational studies in the computational chemistry area with the po-

5 http://egee.cesnet.cz/mediawiki/index.php/Job_Provenance_Demo



14 ALES KRENEK ET AL.

tential for many others application domains.

5 Acknowledgements

This work was done within EU EGEE-II project (INFSO-RI-031688), and sup-
ported by the Ministry of Education of the Czech Republic (contract no.
MSM0021622413), and the Grant Agency of the Czech Republic (contract no.
204/03/H016). Special thanks to prof. Jaroslav Koca for allowing start of CEL
development and all subsequent support.

References

[1] WIESNER, J.; KRIZ, Z.; KUCA, K.; JUN, D.; KOCA, J. Computer Modeling
and Simulation — New Technologies in Development of Means against Combat
Chemical Substances. Voj. zdrav. listy. 2005, vol. 46, no. 2, p. 1144-1145.

[2] HUMPHREY, W.; DALKE, A.; SCHULTEN, K. VMD - Visual Molecular
Dynamics. fournal of Molecular Graphics. 1996, vol. 14, p. 33-38.

[3] KMUNICEK, J.; KULHANEK, P;; PETREK, M. Charon system — framework
for applications and jobs management in Grid environment. In Proceedings of
Cracow Grid Workshop 2005. Academic Computer Center CYFRONET AGH,
2006, p. 332-340. ISBN 83-915141-5-3.

[4] KMUNICEK, J.; PETREK, M.; KULHANEK, P. Charon extension layer —
universal toolkit for Grid applications and computational jobs maintenance.
In Proceedings of Cracow Grid Workshop 2006. Academic Computer Center
CYFRONET AGH, 2007.

[6] RAMAN, R.; LIVNY, M.; SOLOMON, M. Matchmaking: distributed resource
management for high throughput computing. In Proceedings of HPDC, 1998.

[6] DVORAK F. et al. gLite job provenance. In Proceedings of IPAW’06. Springer,
2006, LNCS 4145, p. 246-253.

[7] PACINI F. et al. ob Description Language Attributes Specification. CERN EDMS
#590869, 2006.

[8] EGEE JRA1 team. EGEE Middleware Design—Release I CERN EDMS #567624,
2005.

[9] KMUNICEK, J.; KOURILD. Central European Grid infrastructure for generic
applications. In: Proceedings of 2nd Austrian Grid Symposium. Ossterreichische
Computer Gesellschaft, 2007, p. 131-142.

[10] MATYSKA, L. et al. job Tracking on a Grid — the Logging and Bookkeeping and
_fob Provenance Services. Technical report 9/2007°, Praha: CESNET, 2007.

6 http://www.cesnet.cz/doc/techzpravy/2007/grid-job-tracking/



Multiple Ligand Trajectory Docking Study 15

Appendix A. Job Attributes

The following tables shows a complete list of job attributes stored in JP.

A.1 Snapshot preparation jobs

JjobClass
class of job (snapshot), see Section 3.4.1

version

identification of the experiment (all jobs in analysis share this id, others are
excluded)

snapURI
where the snapshot is stored

snapNumber
snapshot number

receptorName
receptor name

snapTime
snapshot time on the trajectory

receptorPDB
receptor name according to Protein Data Bank’

snapTemp

temperature of the snapshot

snapRMSD
snapshot RMSD (geometrical difference from reference shape)

snapEPot
electrostatic potential of the snapshot

A.1 Ligand preparation jobs

JjobClass
class of job (ligand), see Section 3.4.1

version

identification of the experiment (all jobs in analysis share this id, others are
excluded)

ligandName
short ligand name

7 http://www.pdb.org



16 ALES KRENEK ET AL.

IUPACName
full ligand name

SMILES
ligand formula

sourceDB
from which database the ligand is taken

gmOptMethod
ligand optimization method

gmOptBasis
wave function basis used for ligand optimization

gmEspMethod

method to compute ligand electrostatic charges
gmEspBasis

basis used to computed charges

atomTypes
atom types for the force field used in computation

fileFormat
format of the ligand file

ligandURI
where the ligand is stored

A.1 Docking jobs
jobClass
class of job (docking), see Section 3.4.1

version
identification of the experiment (all jobs in analysis share this id, others are

excluded)

snapURI
where the snapshot is stored

snapNumber
snapshot number

receptorName
receptor name

snapTime
snapshot time on the trajectory



Multiple Ligand Trajectory Docking Study 17

receptorURI
auxiliary template mol2 file for the docking job

ligandURI
where the ligand is stored

dockSurfaceProbeRadius
radius of probe for the docking calculation

dockResidueList
residues determining the active site where docking positions are searched

dockDistance
maximum distance from the residues to search for docking positions

dockGridRes
resolution of the calculation grid

dockNumScoredConf

number of docked conformers to search (flexible docking only)

dockMethod
flexible or rigid docking

dockProtocol
protocol file name
gridMin{X,Y'<}
minimal coordinates of the searched grid

gridMax{X,Y;X}
maximal coordinates of the searched grid

gridScore

value of the scoring function

conformerVdwEnergy
van der Waals energy of the resulting conformer

conformerESEnergy
electrostatic energy of the resulting conformer

structureURI
where the resulting structure was stored

userComment
user-assigned free-form annotation of the docking result

userRank
user-assigned numeric ranking of the docking result



18 ALES KRENEK ET AL.

Appendix B. Index server configuration

JP Index server configuration (see Section 3.3.2) includes JP Primary storage
(s) to query, attributes to retrieve from JPPS, conditions specifying which jobs
should be retrieved, and attributes to be indexed. We use the following values
for our experiment:

— JPPS query conditions: for the prototype testing users involved are enumerated
(i.e., records on all their jobs are retrieved). Production configuration would
be based on a specific value of the version attribute (identification of the ex-
periment), though.

— Retrieved attributes: all attributes listed in Appendix A and the following JP/L&B
system ones:

Attribute Description

owner job owner

jobld grid job id

regtime job registration time

RB resource broker handling the job
CE computing element where the job ran
UlIHost worker node of the CE

CPUTime consumed CPU time

finalStatus final job status

finalStatusDate  when the job reached the final status
retryCount number of retries

— Indexed attributes: owner, jobld, CE, finalStatus, jobClass, version, snapTime,
snapGeom, ligandURI, snapURI, receptorURI, receptorName

The complete configuration is available online®.

Appendix C. Docking Protocol

An example of docking protocol of a real job is given bellow. This XML file
is uploaded “as is” into JP and parsed there by the plugin to produce several job
attributes (Appendix A). Note multiple occurences of <conformer> element which
yield multi-valued JP attributes.

<?xml version="1.0"?>
<dockQOutput xmlns="http://egee.cesnet.cz/en/Schema/JP/Docking">
<proteinSurface unit="angstrom2">24776.54</proteinSurface>
<grid unit="angstrom">
<gridMinX>38.937000</gridMinX>
<gridMinY>41.829000</gridMinY>
<gridMinz>37.361000</gridMinZ>
<gridMaxX>70.847000</gridMaxX>
<gridMaxY>68.885000</gridMaxY>

8 http://lindir.ics.muni.cz/dg_public/cvsweb.cgi/uf07/JPIS/glite-jpis-config.xml



Multiple Ligand Trajectory Docking Study 19

<gridMaxZ>78.851000</gridMaxZ>

</grid>

<conformers
conformersFound="3"
conformersURI="guid:6084d8b5-73da-4460-9874-5a921611e952"

<conformer id="1">
<gridScore>-74.735390</gridScore>
<conformerVdwEnergy>-55.391171</conformerVdwEnergy>
<conformerESEnergy>-19.344217</conformerESEnergy>
<structureURI>guid:6ba7elcd-52fc-4977-b538-affd06f6322f</structureURI>
</conformer>
<conformer id="2">
<gridScore>-74.723007</gridScore>
<conformerVdwEnergy>-55.614491</conformerVdwEnergy>
<conformerESEnergy>-19.108521</conformerESEnergy>
<structureURI>guid:a59d6c33-caf6-4d6a-8b4c-e4eba05628b6</structureURI>
</conformer>
<conformer id="3">
<gridScore>-74.651627</gridScore>
<conformerVdwEnergy>-55.645340</conformerVdwEnergy>
<conformerESEnergy>-19.006287</conformerESEnergy>
<structureURI>guid:91d9556e-d046-4504-be2f-6ff436881906</structureURI>
</conformer>
</conformers>
</dockOutput>



