CESNET 2008

Survey of Authentication Mechanisms for Grids

Daniel Kouřil, Luděk Matyska, Michal Procházka

Outline

Introduction

- PKI
- Kerberos
- Identity Federations
- Passwords

- Credential Transitions
- Conclusion

Introduction

- Security problems in Grids
 - Grids are fully decentralised
 - Data flows across multiple components, organizational domains
 - Data are not under control of the data owner
- Grids are usually bound with only one authN mechanism
 - AuthN mechanisms at local sites can be various
- Users are confused about various types of authN mechanisms
 - It is not flexible, convenient and safe
- Automatic translation
 - Promise solution

PKI

- Based on asymmetric cryptography public and private keys
- Does not require pre-distributed secret
- Usable in loosely-coupled distributed environment
- Plain key-pair
 - SSH
 - Missing identification information and revocation functionality
- PKIX
 - X.509 certificates used to identify holder of the key
 - Mechanism to maintain keys (issuing, revokeing, ...)
- PGP
 - Does not require centralized authorities
 - Users build their own Web of trust

PKI in Grids

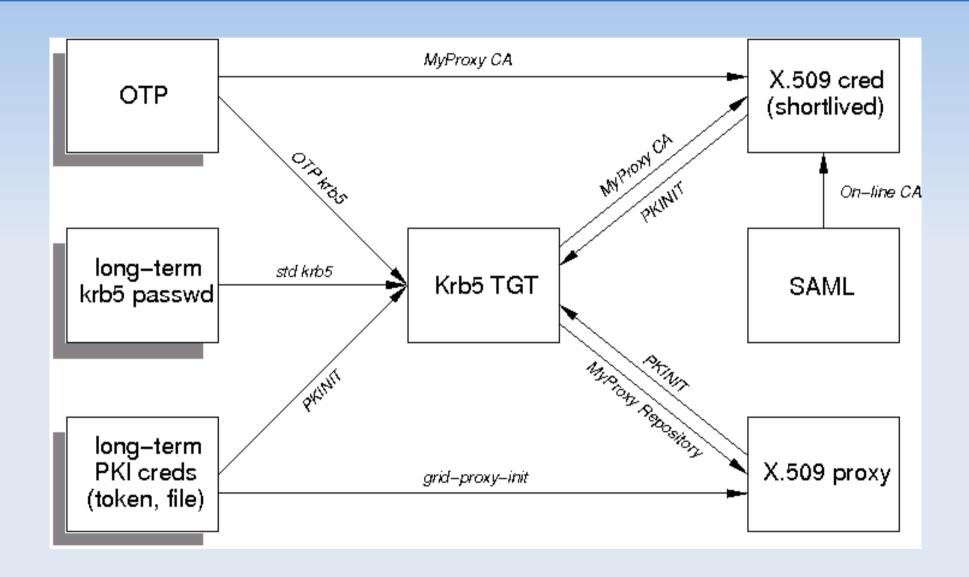
- PKIX is widely used in todays Grids
- UNICORE case
 - Jobs are signed by the user's private key
- Proxy certificate
 - Proxy certificate signed by the user's private key
 - Supports delegation
 - Supports SSO
 - Lack of revocation and support for long jobs
- Complicated for the user
 - Private key file handling

Kerberos

- Central aunthetication service KDC
- Each authN request involves contacting KDC
- Supports SSO
- Scalability problems cross-realm support
- Does not scale even if cross-realm is used
- Suitable for local authN for sites
- Not suitable for Grid

Identity Federations

- Very popular recently
- Consists of IdP and SP
- User management is at the users' institutions
- Does not rely on specific authN mechanism
- Users use only their "home" credentials
- Support for authorization based on attributes
- Web environment only


Identity Federations and Grids

GridShib

- Globus <-> Shibboleth
- Federated Online CA
- Push and Pull mode
- ShibGrid
 - Used at NGS UK
 - Uses MyProxy CA
 - Two modes of operation
 - Users with UK eScience certificate client app.
 - Other users portal uses autogenerated proxy cert.

Passwords

- Very often used
- Does not support SSO
- Initial authN in Grids
 - MyProxy, proxy certificate, Kerberos
- OTP
 - Secure even in untrusted environment
 - Special devices generating OTP

- User can choose from various authN
- Easy to use => safer
- Types of transition
 - OTP -> X.509
 - OTP -> Kerberos
 - Kerberos -> X.509
 - SAML -> X.509
 - X.509 -> Kerberos

- OTP → X.509
 - MyProxy server in CA mode
 - OTP PAM authentication module
 - Two PAM modules implementing two OTP mechs.
 - Java client application which can be loaded into the mobile device
- OTP → Kerberos
 - IETF Draft
 - Not yet implemented

- Kerberos → X.509
 - Users do not need to learn how PKI works
 - Transparently obtain X.509 certificate
 - KCA
 - Supports only this type of transition
 - MyProxy CA
 - Supports another authN methods and modes

- SAML → X.509
 - Online CA as an SP in federation
 - Attributes as an extension in the X.509 certificate
 - GridShib
 - Java applet which stores new certificate on the computer
 - Web based Online CA
 - The key-pair is generated inside the browser
 - CAT
 - Uses web based Online CA
 - Provides certificate management in Windows OS

- X.509 → Kerberos
 - IETF standard PKINIT
 - X.509 used to obtain TGT
 - First open source implementation was contributed by CESNET developers to the Heimdal implementation of Kerberos
 - Current Heimdal also supports proxy certificates
- Transitive transition

Conclusion

- Overview of today's authN mechanisms used in Grids
- Posibility of transition among authN mechs.
- We have tested all transitions methods mentioned before
- and we have contributed to development of several components and mechanisms

This is the end ...

