Network and Grid Monitoring

Ludek Matyska
CESNET
Czech Republic
GRIDs – Basic Concepts

• Distributed Systems
 – Large scale
 – Spanning administrative domains
 – Heterogeneous
• Provide *processing* and *services*
• Very complex jobs
 – Workflows including data staging
 – Interaction of many components
Networks for GRIDs

- Basic underlying infrastructure
- Provide data transfer capability
- Usually not directly exposed
 - Except for data transfer planning
Network Information for GRIDs

• Availability and quality of paths
 – Network capacity prediction
 – Monitoring of actual data transfers
 • Fulfillment of SLA (implicit/explicit)

• Failover
 – Implicit
 – Explicit – new search for appropriate path
Network Capacity Prediction

• How/when I can transfer amount X of data from A to B?
• I have two sets of sites: \{A, B, C, \ldots\} (data sources) and \{X, Y, Z, \ldots\} (using data). Find me one node from the first and one node from the second set such that the transfer of data will be the fastest.
Network Monitoring Role

• The Network Capacity prediction needs a network monitoring data
 – Flow and flow patterns are needed

• NRENs collects this data to some extent only
 – And usually do not provide it to third parties
Network Weather Service (NWS)

• Collects information about flows through network
• Provides interface for predicted link/path capacity
• Challenges
 – Completeness of the information
 • Is deployed as a NREN service?
 – Unpredicted reaction of NWS users
 • Their reaction synchronized if not under control
 – Prediction is hard/impossible
Monitoring of Data Transfers

• Purpose:
 – Check the SLA
 – Provide data for prediction improvement
 – Look for patterns

• Identification of a particular flow
• Authorization to use such service
• Authorization to access data
 – At the end of data transfer
 – In real time
• Not (yet) commonly available
CESNET Systems

• G3 system
 – Infrastructure monitoring
 – SNMP based
 – High detail (e.g. history of virtual port related data)

• FTAS (Flow-based Traffic Analysis System)
 – Aggregate and individual flow information
 – Both IPv4 and IPv6 supported
 – Heavily used for security related incidents
 • DoS and DDoS attacks

• None currently used by the Grid community
Grid Information and Monitoring Services

• Almost every Grid component relies on some external information
• Information provides every Grid element
 – Distributed producers
• Distributed Use
• Classical separation
 – Grid Information services
 – Grid Monitoring services
Grid Information Services

• “Static” information about elements
 – Number of CPUs
 – GPS location of nodes
 – Users and their affiliation
 – Actual length of a queue
 – Number of free CPUs

• Usually does not check itself
Grid Monitoring

• Infrastructure/status monitoring
 – Nodes
 – Services
 • May be distributed/duplicated/migrating
 – Jobs and their workflows

• Application monitoring
 – Infrastructure part
 – Particular application oriented part
Grid infrastructure monitoring

• Structure of service
 – Centralized
 • Easier to deploy
 • Scalability problems
 – Distributed/Hierarchical
 • Higher overhead
 • Reliability of monitoring components
Grid infrastructure monitoring

Nodes

• Monitor properties of nodes
 – Configuration
 – Services associated with nodes
 • Examples:
 – Job acceptance
 – Compiler availability

• Could run complex checks
 – Checkout a CVS and compile a program
Example of Node Monitoring

<table>
<thead>
<tr>
<th>Testbed Status</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table shows test results for various nodes, with colors indicating the status of each test.
Grid infrastructure monitoring
Services

- General Grid services
- Service discovery
 - Where the service run now
- Redundancy
 - Check the service or all its copies?
- Grid monitoring itself a service
Grid infrastructure monitoring

Jobs

• Information about job flows through the Grid middleware
 – Distributed gathering of monitoring data
 – Must be somewhere completed

• Complex jobs/workflows

• EGEE Logging and Bookkeeping (LB)
 – Collects events triggered by job flow through the middleware
 – Computes job states on the fly
 – Provides user access to the job states
LB Service Architecture
Middleware instrumentation

• Idea to collect data from running middleware
 – Similar to the LB service, but more general
• Large number of sources
 – Distributed collection and processing
• SNMP ≠ SGMP?
Monitoring information dissemination

• Many places/services look for the data
• Streams of data
 – Monitoring data discovery
 • What is available where
• Events
 – Subscription/Notification
• Cross organizational data flow
 – Sharing monitoring data
Privacy/Security Considerations

• Potentially sensitive data collected
 – When/where to aggregate
 – Access authorization

• Extended use of mutual authentication of monitoring elements

• Not always required
 – Provision of alternate less secure (faster/low overhead) monitoring infrastructure
NRENs and GRIDs

• Role for NRENs
 – Provide information about the network
 • What is available where
 – Provide information and monitoring services for Grids
• In some aspects analogy to PERT/PACE
• Major challenges
 – Grids are multi-NRENs
 – (Much) more “users”
 – Privacy/Security
 – Heterogeneity of monitored elements
 – Portal and service access to the collected data
Questions?