Using L&B to Monitor Torque Jobs across a National Grid

Voců, M., Šustr, Z., Kouřil, D., Dvořák, F., Ruda, M., Tóth, Š., Sitera, J., Filipovič, J., Poul, M., Matyska, L.
CESNET, Czech Republic
• geographically distributed computing centres
• clusters with both thin and fat nodes, currently ~3500 cores
Looks like grid, but we have:

- **single user management system (Perun)**
 - developed in–house
 - based on federated identities (eduID.cz)
 - supports multiple VOs
- **common authentication system (Kerberos)**
 - one user realm per VO
- **single job management system (Torque)**
 - modified to support virtualization
- **shared filesystems (NFS4)**
 - main storage co–located with big clusters
 - all data visible everywhere (but no location transparency)
Current state:
- moved from using PBSPro to open-source Torque
- one big cluster with central Torque server/scheduler
- single point of failure
- may not handle the planned cluster extensions (in the order of magnitude in #cores)
- needs tuning for network latencies
Next phase (now in testing):
- clusters at main sites, Torque server/scheduler deployed at each cluster
- schedulers cooperate in P2P structure, migrating jobs between servers

Advantages:
- local cluster always accessible even when the servers are partitioned
- scales well
We need to keep track of the jobs flowing through the infrastructure:
- single job database for all Torque servers, central point of contact for users
- non-intrusive, should not influence normal job processing
- should provide the same information Torque provides, more expressive queries
L&B overview

L&B is used to keep track of jobs in grid, in production for Datagrid (and successors) since 2003:

- fast, asynchronous and secure message transport layer
- relational database for job data
- pluggable state-machines for various job types (currently WMS, Condor, CREAM, PBS/Torque, file transfers supported)
- notification mechanisms for informing users about job status changes
- query engine supporting both notifications and direct user queries

![Diagram showing data sources connected to LB server through asynchronous message transport, with state machine, job database, query engine, and user interface.]
Motivation for L&B use

- separation of concerns
 - job data are handled and archived separately from Torque
- reliability
 - data collected and delivered from Torque components independently
 - eliminate single point of failure by using redundant L&B servers (see future work)
- flexibility
 - support for various Torque deployment/configuration schemes (central, distributed P2P, distributed hierarchical, . . .)
 - user job annotation (user tags)
 - custom notification of job state using legacy L&B client or standard messaging infrastructure (eg. STOMP)
- advanced use cases
 - post-termination job data processing, data mining
 - data archivation
 - keeping track of complex job/subjob structures
Implementation – overview

• use Kerberos instead of GSI as an authentication mechanism
• instrument Torque components (server, scheduler, MOM) to log data to L&B:
 – job description – identification, required resources
 – job location – detailed information when job is transferred between Torque components
 – job status – Torque job state/substate, PID of running processes, used resources
• enhance Torque data structures with L&B specific information (server and job attributes)
• add Torque-specific data messages (events), update state machine
• provide qstat-compatible replacement using L&B database
Implementation – Torque

L&B specific attributes in Torque:

- L&B server address – configurable server attribute
- L&B jobid – job attribute, assigned when job is submitted by user
- L&B sequence number – job attribute, enables correct ordering of messages at L&B server

Instrumentation of Torque components (server, scheduler, MOM):

- messages are sent (at least) whenever job state/substate changes
- MOM logs job resource usage periodically
- message delivery is unobtrusive, done by external process
PBS/Torque jobs already supported:

- PBS job state–machine
- events collected by PBS log parsing

Access to Torque source code allows to instrument Torque to get more information:

- define message formats for data from Torque
 - new data types – resource list (list of name = value pairs)
 - new message types:
 ▶ message format for each Torque state change
 ▶ code is generated from format description

- enhance Torque specific state machine
 - maps Torque states/substates into L&B job states
 - Torque internal state/substate visible in L&B job status data (job attribute)
 - resources (requested and used) also stored in L&B job attribute
Replace GSI with Kerberos:

- L&B uses its own abstraction of GSSAPI
- all neccessary modifications contained within single abstraction library (needed to drop VOMS support, though)
- link with Kerberos GSSAPI implementation instead of GSI GSSAPI

Consequences:

- clients (from the protocol point of view) need external nanny to keep Kerberos tickets valid
- identity identifier (string in L&B) in different format (michal@META instead of /CN=Michal Vocu/O=...)
- need identity translation eg. when displaying job status in browser with user certificate
Deployment

- Torque – compiled from (modified) sources
- L&B – installable packages (RPM, .deb)
Conclusions:

- all necessary software modifications were straightforward and well contained
- data collected asynchronously from all Torque components
 - users have more information than from the Torque server(s) alone
- modified Torque is about to be deployed in testing environment

Future work:

- distributed L&B to enhance reliability
- mapping of Kerberos and X.509 identities to support access both from CLI and browsers