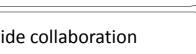


The Pierre Auger Observatory and Grid Computing

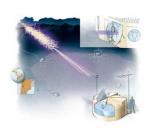
Pierre Auger Observatory

- The largest Cosmic Rays Observatory


- a 100 km² in the Argentina Pampa 3 000 km² in the Argentina Pampa 1 600 Surface Detectors (Cherenkov) 4 + 1 Fluorescence Telescopes
 6 x 5 Fluorescence Telescopes
 6 x 5 Fluorescence Cameras
 10 % of the time (night no moon) Hybrid Events : SD + FD
 Better determination of the energy
- High Energy Cosmic Ray
- Energy 10²⁰
 1 / km² / century
 Expected hybrid events: 10 per year
- Pierre Auger Observatory
- Experimental Array : 2001-2004 Production Area : 2004 Full production : 2006
- Inauguration in 2008

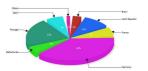
Worldwide collaboration

More than 500 scientists from 94 institutions from 19 countries VO auger established in 2006 by e Prague group (CESNET and



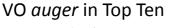
Sites supporting the VO auger (Computing Elements)

Cosmic Ray Showers


When a cosmic ray particle reaches the Earth, it collides with a nucleus high in the atmosphere, producing many secondary particles, which share the original primary particle's energy. The secondary particles subsequently collide with other nuclei in the atmosphere, creating a new generation of energetic particles that continue the process, multiplying the total number of particles. The resulting particle cascade, called "an extensive air shower," arrives at ground level with billions of energetic particles extending over a large area.

Simulations of Ultra High Energy Cosmic Ray Showers is a CPU intensive task and produces large outputs. Showers are independent, parallelization is trivial. Many independent simulation jobs can be run.

Bulk Production on the Grid


Total elapsed time per country, statistics for 2011

Many sites from several countries contribute to the total computing capacity available for the Pierre Auger Observatory.

MC simulations jobs are run by a **dedicated team** started in Prague, since 2009 moved to Granada tea Individual users may use the same resources

Grid is used only for the large scale MC production of cosmic ray showers with different models and parameters

The following table shows the distribution of Total elapsed time grouped by VO and DATE (only information about TOP 10 -ordered by CPI I time. VOe is returned)

Total clapsed time [units Hours] by VO and DATE														
VO	Jan 11	Feb 11	Mar 11	Apr 11	May 11	Jun 11	Jul 11	Aug 11	Sep 11	0 ct 11	Nov 11	Dec 11	Total	- 5
alice	11,582,034	14,797,020	13,769,700	16,630,075	8,668,762	19,001,988	20,705,194	25,405,489	21,699,446	19,910,407	22,052,152	9,942,310	204,164,577	14.591
atlas	50,891,437	49,091,420	47,103,255	44,521,518	54,045,840	62,695,500	68,956,107	53,721,409	64,764,555	67,196,507	65,990,437	32,798,555	661,776,541	47.301
auger	861,772	1,295,547	1,794,425	1,927,831	1,810,718	1,845,510	1,458,992	1,621,581	1,253,848	1,820,343	738,977	627,963	17,047,607	1.225
biomed	1,801,029	1,457,499	1,178,929	754,786	1,301,942	353,695	358,995	186,572	329,671	611,877	429,839	232,805	8,997,639	0.645
cins	26,532,939	14,011,464	23,680,062	28,875,995	33,615,845	29,240,016	33,979,830	36,074,369	34,578,005	40,060,292	40,916,872	20,749,216	362,314,905	25.905
compchem	472,746	1,332,250	649,066	1,866,343	835,358	902,299	571,997	437,091	228,391	138,848	209,530	129,642	7,773,561	0.565
dzero	718,325	730,449	914,201	645,851	583,977	426,100	458,525	417,410	571,471	740,286	617,856	224,912	7,049,363	0.505
ilc	675,327	466,149	425,870	416,692	592,079	923,154	1,613,379	2,132,573	264,477	205,176	315,980	70,214	8,101,070	0.585
lhcb	13,948,287	13,994,479	9,682,592	10,354,957	13,571,275	9,014,881	7,890,565	7,420,585	10,715,424	9,625,468	4,978,829	1,955,502	113,132,844	8.095
theophys	621,452	526,865	775,568	684,882	940,661	1,336,274	814,316	457,252	865,688	724,596	649,697	575,547	\$,772,598	0.635
Total	108,105,348	97,693,042	99,953,668	105,678,930	115,966,457	125,739,417	136,807,900	127,874,331	135,070,977	141,033,800	136,900,169	67,346,666	1,399,130,705	
Percentage	7.73%	6,98%	7.14%	7.62%	8,29%	8.99%	9,78%	9.14%	9.65%	10.66%	9.78%	4.81%		

VO auger is the biggest CPU consumer after the LHC VOs

Source: EGI Accounting Portal

Physics Results 1/4 of 2011 hottest papers in APP from Auger ! Plus 1st and 2nd rank!

ront page of Science for the paper about anizotropy

Already 35 papers published with significant impact

Acknowledgements

EGI.eu Grid Infrastructure enables access to many resources in a unified way. This environment offers the Pierre Auger Observatory a capacity required for cosmic ray showers simulations.

We thank to all sites and their administrators for supporting the VO auger.

Author: Jiří Chudoba, Institute of Physics of the Academy of Sciences and CESNET, Czech Republic

