Performance and Fairness for Users
in Parallel Job Scheduling

Dalibor Klusacek'+
Hana Rudova?

'CESNET, Czech Republic
’Faculty of Informatics, Masaryk University, Czech Republic

16th Workshop on Job Scheduling Strategies for Parallel Processing,
IPDPS, Shanghai, China, 25 May 2012

Motivation

« Efficient application of metaheuristics in Grid/cluster job scheduling
e Scheduling in Czech NGI MetaCentrum

- Managed by queue-based scheduler
« PBS-Pro, TORQUE (a form of Backfilling)
* Problems of interest

- Performance
« Wait time, slowdown, response time
- Fairness
» To keep users satisfied
- Scheduler's behavior — users keep asking:

 “Why my job has not started yet?”
* “Why my job waits when there are free resources?”

Current Approaches

« PBS, LSF, SGE, TORQUE, ...
- Mostly (aggressive) backfilling

* No reservations vs. EASY backfilling vs. Conservative backfilling
» Decisions made in an ad hoc fashion

- Fairness is very important

 FCFS somehow fair but inefficient

« EASY backfilling is dangerous — large jobs may be delayed

« Conservative backfilling — quite fair as no job can be delayed

» Prioritized queues by fairshare principles (balance the user's share)

- Predictability is not usually supported

« Advance Reservations may degrade performance
« Cons. Backfilling is not widely used (reservations limit backfilling opportunities)

Contribution

« Realistic application of metaheuristics in Grid/cluster job scheduling

- Flexible behavior — based on applied criteria and current situation

» Real-life based problem and goals

- Large problem instances

- Performance

- Fairness

- Fast solution (limited runtime awareness)
- Toward predictions

e Further work

- Prototype implementation in actual scheduler (TORQUE)

What is “fairness”?

* Inspired by the fairshare setup used in MetaCentrum

- Maximize the share of mostly “penalized” user
— Prioritizes users with lower resource consumption
- Prioritizes users with higher wait time

« Basic principles

— Fairshare priority = normalized user wait time (NUWT)

user wait time

« NUWT = user CPU time
« NUWT = “how many seconds user waits for one second of job execution”

- Balancing NUWT values

» Decreases the differences in the performance delivered to the users

Proposed Approach

 Combination of known “best practices”

- Use Conservative backfilling

« Conservative backfilling — every job gets a reservation
» Reservations — fairness (no “unlimited” delays)

« Backfill-like approach (efficient utilization)

» Predictability — plan of job execution

- Use optimization

» Improve quality of execution plan (job schedule)

» Subject to schedule evaluation — identification of inefficiencies
- Wait time
- Bounded slowdown
- Response time
- Fairness

Optimization — limited runtime

e Metaheuristics can be time consuming

- Limited time due to the on-line problem character
« Time-efficient approach

- (Valid) initial schedule created quickly using Conservative Backfilling (see =)

- Optimization is only executed when there are no higher priority events such as
job arrivals or job completions (see <===)depicting available time)

- Optimization can be stopped after each iteration when necessary

job arrival / job arrival / job arrival / job arrival /
job completion job completion job completion job completion
P
e e B G <G—) G—
schedule schedule schedule schedule
update update update update
using using using using

Cons. Bf. Cons. Bf. Cons. Bf. Cons. Bf.

Optimization — Tabu Search

Improves initial scheduled delivered
by Conservative backfilling

Tabu search-inspired optimization
algorithm (TS)

- Tabu list prevents short cycles

- Selective re-backfilling guided by
evaluation

Evaluation

- Guides the optimization phase

- Performance and Fairness related
criteria

 Wait time
 Bounded slowdown

 Response time
« NUWT

:

remove random job

v

compress schedule

v

re-backfill job

v

evaluate new schedule

\

accept / reject

Experimental Results

Alea simulator

- Complex job scheduling simulator built on the top of optimized GridSim
toolkit

Functionality (scheduling algorithms, visualization, ...)
« Speed (optimized GridSim core)

6 data sets from Parallel Workloads Archive
- MetaCentrum (806 CPUs, 103,656 jobs during 5 months)
- KTH SP2 (100 CPUs, 28,489 jobs during 11 months)
- CTC SP2 (338 CPUs, 77,222 jobs during 11 months)
- SDSC SP2 (128 CPUs, 59,725 jobs during 24 months)
- SDSC BLUE (1,152 CPUs, 243,314 jobs during 34 months)
- HPC2N (240 CPUs, 202,876 jobs during 42 months)

Algorithms

« Experimental evaluation of TS against
- FCFS

Bad, offscale-high results
Not shown in the graphs

- Backfilling without reservations (BF)
- EASY backfilling (first job gets a reservation) (BF-EASY)
- Conservative backfilling (every job get a reservation) (BF-CONS)

- Backfilling without reservations + Fairshare (BF-FAIR)

6500

6000

wait time [s]
n
@
=2
o

5000

4500

18000

16000
— 14000
12000
10000
8000
6000
4000
2000

wait time [

Slowdown + Wait time

MetaCentrum SDSC BLUE
10000 ya
g P 8000 -
'/ \ //_\ 8000 i o t_ ,/J i
| Ml fomi) ATy 5 C)
__ 68 L/ N @ 7000 b BN i
17, 41410 -~ E 8000 II\SH_I} k4 J5L2
308 = 5000 '
= 4000
9 3000 é
or 2000 5.8
B & B B
BF Fg ﬁr: o F,.q,: ~ EFEAS FC%F% S
CTC SP2 KTH SP2
T 8000
(i) (D
O 7000 =l
|"/ \'I Slie EEUU{] II.-"’_H“‘-. (_\\: 96:3 l/_ \:'
N/ = S)\»-f" =
A = = B4 1
() 343) = 5000 S
‘\\h;/) i = 108.2
S e {::I 4000 -.‘_;'
a 353
3000
B Br. T
EF' EF-E‘] }.-F % F-qf F' FE;q CON.S- F#I; !S'

26000
25500
25000
24500

24000

response time [s]

23500

23000

28000
26000

—

o 24000
E
= 22000

:
S 20000
2]
2 18000

16000

Response time

response time |
—4
=
=
=
=

MetaCentrum
5, 5, B T
Fﬁq y FCDNS FF‘%? Y

CTGC SP2

16500
16000
= 15500
‘2 15000
= 14500
@ 14000
2 13500
2 13000

12500

12000

SDSC BLUE

8 8 5 T
R g, o Cop FFarg TS

KTH SP2

Fairness

MetaCentrum

std. dev. /— |
avg. I

-

5 & B 8 T
=~ F. E. K. &
f4sy” Cong TAim
CTC SP2
std. dev. /—
avy.
-l =
~ . F. ~. &

SODSC BLUE
std. dev.
avy. HE.
L.
= F‘E "ISF RCDJ"I.".S FLFJq . &
KTH SP2

std. dev. =3
avg. D

Conclusion

« Simple but powerful extension of Conservative backfilling

— Evaluation and optimization

« “Controlled” re-backfilling
» Significant improvement
— Classical criteria
- Fairness-related criteria
- Time efficient
e Can be used when job runtime estimates are inaccurate
- It is only backfilling...

« Schedule compression is needed when job completes earlier

« Evaluation is not precise — still improving solutions are found regularly

response time[s]

bounded slowdown

14000
13000
12000
11000
10000
9000
5000
000
6000

40

30

2

L]

1

L]

=

SDSC BLUE
response time [s]

BF-EASY EBF-CONS BF-FAIR

SDSC BLUE
bounded slowdown

IIIIJ

BF-EAZY BF-COMS

BF-FAIR

Example

W precise
M inaccurate

Mprecise
Binaccurate

response time[s]

bounded =lowdown

35000

30000

25000

20000

15000

100
g0
60
40
20

0

CTC SP2

response time[s] Wprecise

Minaccurate

BF-EASY BF-CONS BF-FAIR

CTC SP2

bounded slowdown |Eprecise

M inaccurate

IIJ--

BF-EASY BF-CONS

BF-FAIR

Ongoing Work

« Predictability

- Conservative backfilling is predictable
- Due to optimization the “reservations” are changed
» Optimization delays some jobs wrt. initial assignment
* Multi-resource fairness
- Memory, 1/O

- Berkeley's Dominant Resource Fairness - Fair Allocation of Multiple
Resource Types

« Working implementation in TORQUE

- First tests show better performance wrt. classical techniques

- Further development toward practical usage

Runtime requirements

Implementation in a real TORQUE
scheduler

Problem description:
- 219 nodes with 1494 CPUs

- Initial schedule consisting of
0..25,000 jobs

Time needed to add 1 job

Time needed to perform 1 iteration of TS

time (microsec)

time (microsec)

Add 1 job using Conservative Backfilling
2500

2000

1500

1000

500

0 5k 10k 15k 20k 25k
number of jobs

1 iteration of TS

35000
30000
25000
20000
15000
10000

5000

0 5k 10k 15k 20k 25k
number of jobs

w vchlumsky@aeglos: ~

root@aeglos:~# gstat 3 -f
Job Id: 3.aeglos
Job_Name = STDIN
Job_Owner = pbstest@aeglos
job_state = Q
server = aeglos
Checkpoint = u
:time = Mon Nov 28 16:43:46 2011
time = Mon Nov 28 16:43:46 2011 . .
:chtime = Mon Nov 28 16:47:20 2011 planned Start tlme (SChtlme)

schnode = nodel

-
euser = pbstest node name (SChnOde)
egroup = pbstest

submit_args = -1 nodes=1:ppn=4,mem=3gb,walltime=108

root@aeglos: ~#

