The Extension of Torque Scheduler Allowing the Use of Planning and Optimization Algorithms in Grids

Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

vchlumsky@cesnet.cz

CESNET z.s.p.o., Czech Republic

11th Cracow Grid Workshop | November 7 – 9, 2011
Motivation

- Efficient job scheduling in Grids is difficult task
 - large, heterogeneous and dynamic system
- State of the art scheduling approaches
 - queue-based
 - robust and tolerable to dynamic environment
 - ad hoc decisions (at the very last moment)
 - limited predictability, planning and "self evaluation"
 - hard to use them when several objectives (goals) are to be followed simultaneously
Schedule-based Solutions

- **Schedule represents plan of job execution**
 - straightforward planning
 - allows to predict behavior
 - easy **evaluation** wrt. selected optimization criteria
 - evaluation detects "problems"
 - **optimization of schedule**
 - to fix the problem
 - to improve the quality
 - using advanced scheduling techniques such as (meta)heuristics
Main Contribution of Our Work

- Implementation of schedule-based solution in Torque Resource Manager

- Main features
 - schedule data structure in the `pbs_sched` module
 - planning and prediction
 - when and where jobs will be executed
 - the use of **optimization algorithms**
 - subject to selected optimization criteria
 - local search-based methods
 - periodically improving the quality of schedule
Schedule Representation

- **job_list**: a list of objects that represent job-to-machine mapping in time
- **gap_list**: a list of gaps that represent unused CPU time slots
 - speeds up common operations
 - e.g., when trying to backfill some job
 - only the gap list is traversed
 - start times of previous jobs remain guaranteed
Torque Resource Manager

- Modification of **pbs_sched** module
 - schedule structure
 - optimization algorithms
 - related methods

![Diagram of Torque Resource Manager](image)
Preliminary Results

- 4 problem instances using real workloads from Czech NGI MetaCentrum
- **2 iterative Local Search-based optimization algorithms**
 - "conservative" gap-search algorithm
 - move random jobs into existing gaps
 - random-search algorithm
 - move random jobs into random positions
 - applied objective – **minimize avg. slowdown**
 - measured criteria
 - avg. slowdown
 - avg. response time
 - avg. wait time
- **Compared wrt. FCFS and Backfilling**
Current and Future Work

- Further testing
 - implementation of multi-criteria objective function
- Fairness related problems
 - job-to-job and user-to-user fairness
 - proposal and integration of proper objective functions
- Deployment of such a solution in a production environment
- The use of runtime-prediction techniques
 - when estimates are very inaccurate/missing
- Preparation of a publicly available software package
 - Torque with the schedule-based extension of pbs_sched module