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Introduction

● Motivation
● Practical problems we faced during our research in the area of Grid 

scheduling

● Proposal of efficient scheduling algorithms

● Implementation

● Even good algorithm may be very inefficient when implemented 
in a wrong fashion or when the scale of the problem increases

● This paper describes how to efficiently represent large job 
schedules 
● wrt. memory requirements

● wrt. runtime requirements
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Problem Description

● Grid 

● Large system of distributed (computational) resources
● Executing users' applications
● Highly dynamic, heterogeneous

● Grid scheduling

● Job allocation on resources in time

– Subject to (often complex) objective criteria
● Must be fast ("on-line scheduling")

– Difficult task due to dynamic behavior and uncertainty
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Schedule-based Approach

● Instead of queue(s), schedule (plan of job execution) is built
● Allows to plan when and where jobs will be executed

● Preditability (useful for the user)

● Evaluation (helps to identify problems, inefficiencies)

● Optimization (helps to fix problems and inefficiencies)

machines        schedule (plan of job execution)

current time       …         future
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How To Efficiently Represent Schedule

● Unlike the queue, schedule is more complicated structure

● The Grid system is often huge and hundreds of jobs are planned 
at the same moment

● Data representation should be
● Memory efficient (schedules are huge – many CPUs, many jobs)

● Time efficient (wrt. common schedule-related operations)
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Schedule Representation (1)
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This representation does not scale 
well w.r.t. the length of the schedule. 

One month for 1 CPU would require 2,6 milions 
cells in case that 1 cell = second.

"Human readable" schedule                              Matrix-like representation

The size of such
structure is proportional

to m·Cm a x
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Schedule Representation (2)
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Information about given job can be "scattered"
in cells with different mutual position.

E.g., job 3 is stored in second cell (row
1
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cell (row
0
), respectively.
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Schedule Representation (3)
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Gaps are stored in a separate list.
It is useful as they can be used to for new jobs.

Saves computational time, do not change guaranteed
start times of previous jobs.

The size of such structure 
is proportional to 2·n
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Schedule Consistency

● On-line scheduling therefore
● Schedule becomes inconsistent with new state of the system

● Something happens

– Machine fails

– Job arrives

– Job completes prematurely

– Optimization (i.e., modifications of existing schedule)

– etc.

● Schedule must be updated
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When to Update the Schedule?

● Machine fails
● Use only working CPUs 

● Job finishes earlier
● Shift later jobs to ealier time slot

● Job position has changed (e.g., by 
optimization algorithm)
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How to Update the Schedule?

● Update procedure
● Recomputes job "coordinates" for each job 

– start time

– completion time

– set of assigned CPUs

● The gap list is recreated

gap_list := null;

for i:=1 to n do
  job:= i-th job from job_list;
  find earliest start time of job;
  compute completion time of job;
  compute the set of CPUs assigned to job;
  extend gap_list with new gaps that could appear "in front" of job;
end for
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How the Update Goes...
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How the Update Goes...
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How the Update Goes...
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Time Complexity

● Key operation:

● Finding earliest time slot + CPU selection

● Let n be the number of jobs, m be the number of CPUs

● Naive implementation using unordered array: O(m2·n) 

● Binary heap-based structure 

● Each node contains list of CPUs that are free at time = node key

● Reduces time needed to find earliest time slot

– best case: O(1)

– worst case: O(m·log m)

● Heap update: O(m + log m) = O(m)

● The complexity of UpdateProcedure is in O(m·n)
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Experimental Evaluation

● Measures the scalability of the schedule structure

● When both m and n and is increasing
● Runtime needed to update the schedule structure
● RAM usage

● Experiment setup
● n = {100, 500, 1000, 2000, 5000, 10,000} jobs
● m = {100, 200, 500, 1000, 2000, 10,000} CPUs
● Job paralelism = {1, 2, … , 128} CPUs per job
● Each experiment repeated 20 times
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Runtime: Array vs. Heap 
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RAM Usage
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Conclusion

● Efficient schedule representation
● Scales linearly wrt. number of jobs

● Gaps are stored in a separate list (useful for scheduling)

● Efficient update procedure
● Thanks to the use of binary heap

● Even huge schedules are updated within few miliseconds

● Current and future work
● Implementation of such a structure in production scheduler

● Torque Resource Management System in MetaCentrum
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Algorithm Runtime
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● Job 2 finished earlier

● Update is started

● Jobs 1 and 2 are inserted (as in previous case)

● Job 3 is inserted

● Earliest start time, completion time and a set 
of CPUs are found for job 3

●

●

● Job 4 is inserted (2 gaps appear)
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Time Complexity

● 1 job in O(m · log m)

● n jobs in O(m · n) – why?

● At the beginning, the heap contains 1 node

● Heap size is at most m

● Each job inserts at most 1 node => O(m)

● => all n jobs cannot extract more than n nodes

● => O(n · log m)

● Together O(n·m) + O(n·log m) = O(n·(m+log m)) = 
= O(n·m).
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Queue-based Approach

● Standard solution in production systems (PBS, LSF, Torque,...) 

● Limited "self control"

● Work in an "ad hoc" fashion

● Limited evaluation, limited prediction

scheduling
policy

1 .. N queues                       
waiting jobs ordered, e.g., by arrival time or priority

machines

new job

job selection
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Schedule Representation (3)
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The size of such structure is proportional to 2·n
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Runtime of Update Procedure
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