Peer-to-peer cooperative scheduling architecture for National Grid Infrastructure

L. Matyska, M. Ruda, S. Toth

CESNET Czech Republic

10th March 2010

ISGC2010 (Taipei, Taiwan)

 Many approaches and types of schedulers in standard grid

- Multi-layered approach
- Grid middleware usually deals with the three top layers
 - Pilot scheduling usually more user-centric
- Usually requires remote services available
 - Often leads to local by-pass and direct cluster submits

META Centrum (http://meta.cesnet.cz)

- Anyone remembers term metacomputing?
- Czech national grid infrastructure
 - Under umbrella of CESNET
- Computational resources
 - Mostly clusters
 - Installed across country, centrally managed
- The same team involved in EGEE
 - Computing site, user and VO support, gLite development
- Virtualization and job scheduling as one research focus

Basic features

- Relies on batch schedulers more than usually
- Global batch system instead of multi-level scheduling
- Standard grid interface (gLite/Globus) also available
- Integrated with scheduling of virtual machines
- Based on a central PBSPro installation
 - Central knowledge of system's state
 - Easy implementation of global scheduling policies
 - Fairshare
 - Avoid problems with multi-level schedulers
 - Job stalled when waiting for cluster in maintenance
 - Local jobs not visible to global scheduler
 - Support for large, multi-site jobs

Scalability

- Adding new sites increases burden on central scheduler
- Stability of central-server based solution
 - Just limited support for wide area replication
 - Inability to submit new jobs if central service not up/available
- Local un-usability of a disconnected cluster
 - Leads to frustrated users, by-passing the \mathcal{META} Centrum scheduling

Not able to cope with the planned major extension of the national grid infrastructure

Motivation

- Keep positive aspects of a centralized solution
 - Especially the ability to take global decisions
 - While not introducing multi-level scheduling
- Remove (some of) negative aspects of a centralized solution
 - Scalability
 - Use of disconnected resources
- General features
 - Self-contained scheduler at each site (or even a large cluster)
 - Always able to accept jobs for the whole infrastructures
 - Always able to submit jobs to the local cluster
 - Cooperating with similar schedulers at other sites
 - Exchanging information about the whole infrastructure (global state)
 - Ability to make a "global" decision
 - Moving jobs directly between schedulers

Motivation

- Keep positive aspects of a centralized solution
 - Especially the ability to take global decisions
 - While not introducing multi-level scheduling
- Remove (some of) negative aspects of a centralized solution
 - Scalability
 - Use of disconnected resources
- General features
 - Self-contained scheduler at each site (or even a large cluster)
 - Always able to accept jobs for the whole infrastructures
 - Always able to submit jobs to the local cluster
 - Cooperating with similar schedulers at other sites
 - Exchanging information about the whole infrastructure (global state)
 - Ability to make a "global" decision
 - Moving jobs directly between schedulers

Proposed architecture in more detail

Basic features:

- Torque in the hearth of each local scheduler
- Extended with
 - A gateway interface to accept jobs and store them into a routing queue
 - A "global" scheduling strategy
- L&B from gLite as the persistent information storage for job monitoring

Lead on each site to:

- Standard Torque instalation
- Extended scheduler managing jobs from more servers
- Jobs submitted through gateway to routing queue
- Scheduler
 - Moves job to a different server where job has to be started
 - Moves job to a local queue where job is started

Jobs monitored from any gateway, job information stored in L&B

Cooperative scheduling

- Torque enhancements to support peer-to-peer scheduling
- Maintenance of globally available information used for scheduling
 - Fair-share is using actual accounting information
- Support for multi-site jobs
- Scheduler extensions
- PBSPro originally used for better stability across Czech Republic
 - Switch to Torque
 - Need to port Kerberos support
 - Need to port scheduling enhancements
 - Support for management of virtual machines
 - Magrathea system (extending node states)
 - Direct support for virtualized fabrics must be ported to Take to NET

- Peer-to-peer extensions—prototype done, reasonable overhead
- Fair-share—simple solution done, more development later
- Multi-site jobs—several possibilities in discussion
- Torque scheduler extensions—on-going work
- Kerberos support ported
- Magrathea support—on-going work
- Gateway and L&B usage—next phase

Peer-to-peer overhead—Experimental setup

Series of measurements

- Realistic simulation of a production environment using light-VM extension of Linux kernel
- 5000 jobs submitted to 200 nodes on up to 5 sites
- All the jobs run

Peer-to-peer overhead—Experimental setup

Interaction between schedulers and sites

Communication scheme

"Neighbor" approach, information routing

On demand super-scheduler for multi-site jobs

Conclusion

- Cooperative scheduling architecture supports
 - High scalability (esp. with a proper communication scheme)
 - Independence on remote services and local submit
 - Ability to make decisions based on global state
 - Free job movement between sites based on local scheduler decision
 - Direct inclusion of virtualized resources
 - Easy integration of different gateways (e.g. gLite CE interface)
- Its *META Centrum* implementation underway
 - Based on a Torque system
 - Extended to multi-site scheduling
 - *META Centrum* native gateways
 - Use of gLite L&B for job monitoring
- Initial experiments encouraging (acceptable overhead for peer to peer communication)
- Expected to be in full production already this year

14/15

Thank you Questions?

ISGC2010 (Taipei, Taiwan)

Cooperative scheduling

10th March 2010 15 / 15