
Moving away from ETICS . . . to Jenkins
or how I learned to stop worrying and replace Etics with a 300-line script

Dvořák, F.; Sitera, J.; Šustr, Z.
CESNET, a. l. e., Prague, Czech Republic

The middleware release process used within the EGEE series of
projects and within EMI depended heavily on ETICS to provide cen-
tralized build, integration, repository and archiving functions. Al-
though there was certain progress towards independence in the final
era of EMI, in the end, each product team had to deal with the de-
commissioning of ETICS separately.

The middleware development team at CESNET, the providers of
four distinct grid products within the EMI stack, have adopted Jen-

kins [1], [2] to provide integration functions missed after the end of
EMI. This poster gives details of CESNET’s solution, used to con-
tinuously build and integrate its four products, consisting, in total,
of more than thirty packages. The continuous integration process
takes care not only of regular or release builds, but also of continu-
ous packaging and testing.

Within the few months in use, Jenkins was used succesfully to
produce at least one release for each relevant product.

Repository
accessible over a

public URL

Build configurations
for

binary packages

Jenkins
repository

EMI
Repository

EPEL/Fedora
Repository

Build configuration
for

source packagesSource code
repository
at GitHub

Launcher

Deployment
+ Functionality

tests

3rd party deps.
repository

Reports

Common build
execution script

.tar.gz

.tar.gz

.dsc

.src.rpm

notif.

pull

Build Execution Script
The diagram below gives a high-level idea of the
purpose and internal workings of the build execution
script.

Source packages
downloaded and unpacked

by Jenkins

Detect distribution

RPM deb

chroot

mock
...

pbuilder
...

Build artifacts
uploaded by Jenkins

th
e 

co
m

m
on

 b
ui

ld
 e

xe
cu

tio
n 

sc
rip

t

Determine component
build order

foreach ...

Comparison with the Etics-based solution
The solution based on Jenkins—illustrated in the diagram above—is less flex-
ible but simpler, easier to maintain and adequately functional.

•Jenkins is used as a sophisticated scheduler for build operations with
data manipulation and archival functions.

+ The Makefile targets for mock and pbuilder tools—already develo-
ped within the EMI project—are reused in the new environment.

+ The missing functionality—correctly ordered execution of the appropriate
build tool in a pristine environment—is achieved through a simple build
execution script.

•There is no automated detection of dependences between packages.
The build order is hard-coded in the execution script. However, this is
easily maintained for the handful of products provided by a single team,
and seldom changes.

+ Completes full automation of the continuous integration chain for mid-
dleware products: GitHub → Jenkins → testing/certification cloud for
CESNET’s grid middleware products [3], whereby a commit to the
development branch in the VCS triggers a build and then a deploy-
ment/functionality test of the change.

References

[1] Jenkins CI, http://jenkins-ci.org

[2] CESNET Jenkins instance, https://emian.zcu.cz:8443/jenkins/

[3] Mass Testing of EMI Products in Czech NGI’s Virtualized Environment,
http://egee.cesnet.cz/cvsweb/LB/CF12-mass-test.pdf

http://meta.cesnet.cz
http://metacentrum.cz
meta@cesnet.cz

MetaCentrum project is supported under the
programme "Projects of Large Infrastructure
for Research, Development, and Innovations"
LM2010005 funded by the Ministry of
Education, Youth, and Sports of the Czech
Republic

http://jenkins-ci.org
https://emian.zcu.cz:8443/jenkins/
http://egee.cesnet.cz/cvsweb/LB/CF12-mass-test.pdf
http://meta.cesnet.cz
http://metacentrum.cz
meta@cesnet.cz

