

Performance and Fairness for Users
in Parallel Job Scheduling

Dalibor Klusáček1,2

Hana Rudová2

1CESNET, Czech Republic
2Faculty of Informatics, Masaryk University, Czech Republic

16th Workshop on Job Scheduling Strategies for Parallel Processing,
IPDPS, Shanghai, China, 25 May 2012

Motivation

● Efficient application of metaheuristics in Grid/cluster job scheduling

● Scheduling in Czech NGI MetaCentrum

– Managed by queue-based scheduler
● PBS-Pro, TORQUE (a form of Backfilling)

● Problems of interest

– Performance
● Wait time, slowdown, response time

– Fairness
● To keep users satisfied

– Scheduler's behavior – users keep asking:
● “Why my job has not started yet?”

● “Why my job waits when there are free resources?”

Current Approaches

● PBS, LSF, SGE, TORQUE, …

– Mostly (aggressive) backfilling
● No reservations vs. EASY backfilling vs. Conservative backfilling

● Decisions made in an ad hoc fashion

– Fairness is very important
● FCFS somehow fair but inefficient

● EASY backfilling is dangerous – large jobs may be delayed

● Conservative backfilling – quite fair as no job can be delayed

● Prioritized queues by fairshare principles (balance the user's share)

– Predictability is not usually supported
● Advance Reservations may degrade performance

● Cons. Backfilling is not widely used (reservations limit backfilling opportunities)

Contribution

● Realistic application of metaheuristics in Grid/cluster job scheduling

– Flexible behavior – based on applied criteria and current situation

● Real-life based problem and goals

– Large problem instances

– Performance

– Fairness

– Fast solution (limited runtime awareness)

– Toward predictions

● Further work

– Prototype implementation in actual scheduler (TORQUE)

What is “fairness”?

● Inspired by the fairshare setup used in MetaCentrum

– Maximize the share of mostly “penalized” user

– Prioritizes users with lower resource consumption

– Prioritizes users with higher wait time

● Basic principles

– Fairshare priority = normalized user wait time (NUWT)
● NUWT =

● NUWT = “how many seconds user waits for one second of job execution”

– Balancing NUWT values
● Decreases the differences in the performance delivered to the users

userwait time
userCPU time

Proposed Approach

● Combination of known “best practices”

– Use Conservative backfilling
● Conservative backfilling → every job gets a reservation

● Reservations → fairness (no “unlimited” delays)

● Backfill-like approach (efficient utilization)

● Predictability – plan of job execution

– Use optimization
● Improve quality of execution plan (job schedule)

● Subject to schedule evaluation → identification of inefficiencies

– Wait time

– Bounded slowdown

– Response time

– Fairness

Optimization – limited runtime

● Metaheuristics can be time consuming

– Limited time due to the on-line problem character

● Time-efficient approach

– (Valid) initial schedule created quickly using Conservative Backfilling (see)

– Optimization is only executed when there are no higher priority events such as
job arrivals or job completions (see depicting available time)

– Optimization can be stopped after each iteration when necessary

 Time

job arrival /
job completion

job arrival /
job completion

job arrival /
job completion

job arrival /
job completion

schedule
update
using

Cons. Bf.

schedule
update
using

Cons. Bf.

schedule
update
using

Cons. Bf.

schedule
update
using

Cons. Bf.

Optimization – Tabu Search

● Improves initial scheduled delivered
by Conservative backfilling

● Tabu search-inspired optimization
algorithm (TS)

– Tabu list prevents short cycles

– Selective re-backfilling guided by
evaluation

● Evaluation

– Guides the optimization phase

– Performance and Fairness related
criteria

● Wait time
● Bounded slowdown
● Response time
● NUWT

remove random job

compress schedule

re-backfill job

evaluate new schedule

acceptaccept / rejectreject

Experimental Results

● Alea simulator

– Complex job scheduling simulator built on the top of optimized GridSim
toolkit

● Functionality (scheduling algorithms, visualization, ...)

● Speed (optimized GridSim core)

● 6 data sets from Parallel Workloads Archive

– MetaCentrum (806 CPUs, 103,656 jobs during 5 months)

– KTH SP2 (100 CPUs, 28,489 jobs during 11 months)

– CTC SP2 (338 CPUs, 77,222 jobs during 11 months)

– SDSC SP2 (128 CPUs, 59,725 jobs during 24 months)

– SDSC BLUE (1,152 CPUs, 243,314 jobs during 34 months)

– HPC2N (240 CPUs, 202,876 jobs during 42 months)

Algorithms

● Experimental evaluation of TS against

– FCFS
● Bad, offscale-high results

● Not shown in the graphs

– Backfilling without reservations (BF)

– EASY backfilling (first job gets a reservation) (BF-EASY)

– Conservative backfilling (every job get a reservation) (BF-CONS)

– Backfilling without reservations + Fairshare (BF-FAIR)

Slowdown + Wait time

Response time

Fairness

Conclusion

● Simple but powerful extension of Conservative backfilling

– Evaluation and optimization
● “Controlled” re-backfilling

● Significant improvement

– Classical criteria

– Fairness-related criteria

– Time efficient

● Can be used when job runtime estimates are inaccurate

– It is only backfilling...
● Schedule compression is needed when job completes earlier

● Evaluation is not precise – still improving solutions are found regularly

Example

Ongoing Work

● Predictability

– Conservative backfilling is predictable

– Due to optimization the “reservations” are changed

● Optimization delays some jobs wrt. initial assignment

● Multi-resource fairness

– Memory, I/O

– Berkeley's Dominant Resource Fairness - Fair Allocation of Multiple
Resource Types

● Working implementation in TORQUE

– First tests show better performance wrt. classical techniques

– Further development toward practical usage

Runtime requirements

● Implementation in a real TORQUE
scheduler

● Problem description:

– 219 nodes with 1494 CPUs

– Initial schedule consisting of
0..25,000 jobs

● Time needed to add 1 job

● Time needed to perform 1 iteration of TS

qstat command with prediction

