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Motivation

● Efficient application of metaheuristics in Grid/cluster job scheduling

● Scheduling in Czech NGI MetaCentrum

– Managed by queue-based scheduler
● PBS-Pro, TORQUE (a form of Backfilling)

● Problems of interest

– Performance
● Wait time, slowdown, response time

– Fairness
● To keep users satisfied

– Scheduler's behavior – users keep asking: 
● “Why my job has not started yet?”

● “Why my job waits when there are free resources?”



  

Current Approaches

● PBS, LSF, SGE, TORQUE, … 

– Mostly (aggressive) backfilling
● No reservations vs. EASY backfilling vs. Conservative backfilling

● Decisions made in an ad hoc fashion

– Fairness is very important
● FCFS somehow fair but inefficient

● EASY backfilling is dangerous – large jobs may be delayed

● Conservative backfilling – quite fair as no job can be delayed

● Prioritized queues by fairshare principles (balance the user's share)

– Predictability is not usually supported
● Advance Reservations may degrade performance

● Cons. Backfilling is not widely used (reservations limit backfilling opportunities)



  

Contribution

● Realistic application of metaheuristics in Grid/cluster job scheduling

– Flexible behavior – based on applied criteria and current situation

● Real-life based problem and goals

– Large problem instances

– Performance

– Fairness

– Fast solution (limited runtime awareness)

– Toward predictions

● Further work

– Prototype implementation in actual scheduler (TORQUE)



  

What is “fairness”?

● Inspired by the fairshare setup used in MetaCentrum

– Maximize the share of mostly “penalized” user

– Prioritizes users with lower resource consumption

– Prioritizes users with higher wait time

● Basic principles

– Fairshare priority = normalized user wait time (NUWT) 
● NUWT = 

● NUWT = “how many seconds user waits for one second of job execution”

– Balancing NUWT values
● Decreases the differences in the performance delivered to the users

userwait time
userCPU time



  

Proposed Approach

● Combination of known “best practices”

– Use Conservative backfilling 
● Conservative backfilling → every job gets a reservation

● Reservations → fairness (no “unlimited” delays)

● Backfill-like approach (efficient utilization) 

● Predictability – plan of job execution

– Use optimization
● Improve quality of execution plan (job schedule)

● Subject to schedule evaluation → identification of inefficiencies

– Wait time

– Bounded slowdown

– Response time

– Fairness



  

Optimization – limited runtime

● Metaheuristics can be time consuming

– Limited time due to the on-line problem character

● Time-efficient approach

– (Valid) initial schedule created quickly using Conservative Backfilling (see        )

– Optimization is only executed when there are no higher priority events such as 
job arrivals or job completions (see            depicting available time)

– Optimization can be stopped after each iteration when necessary
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Optimization – Tabu Search

● Improves initial scheduled delivered 
by Conservative backfilling

● Tabu search-inspired optimization 
algorithm (TS)

– Tabu list prevents short cycles

– Selective re-backfilling guided by 
evaluation

● Evaluation

– Guides the optimization phase 

– Performance and Fairness related 
criteria 

● Wait time
● Bounded slowdown
● Response time
● NUWT

remove random job

compress schedule

re-backfill job

evaluate new schedule

acceptaccept / rejectreject



  

Experimental Results

● Alea simulator

– Complex job scheduling simulator built on the top of optimized GridSim 
toolkit

● Functionality (scheduling algorithms, visualization, ...)

● Speed (optimized GridSim core)

● 6 data sets from Parallel Workloads Archive

– MetaCentrum (806 CPUs, 103,656 jobs during 5 months)

– KTH SP2 (100 CPUs, 28,489 jobs during 11 months)

– CTC SP2 (338 CPUs, 77,222 jobs during 11 months)

– SDSC SP2 (128 CPUs, 59,725 jobs during 24 months)

– SDSC BLUE (1,152 CPUs, 243,314 jobs during 34 months)

– HPC2N (240 CPUs, 202,876 jobs during 42 months)



  

Algorithms

● Experimental evaluation of TS against

– FCFS 
● Bad, offscale-high results

● Not shown in the graphs

– Backfilling without reservations (BF)

– EASY backfilling (first job gets a reservation) (BF-EASY)

– Conservative backfilling (every job get a reservation) (BF-CONS)

– Backfilling without reservations + Fairshare (BF-FAIR)



  

Slowdown + Wait time



  

Response time



  

Fairness



  

Conclusion

● Simple but powerful extension of Conservative backfilling

– Evaluation and optimization
● “Controlled” re-backfilling

● Significant improvement

– Classical criteria

– Fairness-related criteria

– Time efficient

● Can be used when job runtime estimates are inaccurate

– It is only backfilling...
● Schedule compression is needed when job completes earlier

● Evaluation is not precise – still improving solutions are found regularly



  

Example



  

Ongoing Work

● Predictability

– Conservative backfilling is predictable

– Due to optimization the “reservations” are changed

● Optimization delays some jobs wrt. initial assignment

● Multi-resource fairness

– Memory, I/O

– Berkeley's Dominant Resource Fairness - Fair Allocation of Multiple 
Resource Types

● Working implementation in TORQUE

– First tests show better performance wrt. classical techniques

– Further development toward practical usage



  

Runtime requirements

● Implementation in a real TORQUE 
scheduler

● Problem description:

– 219 nodes with 1494 CPUs

– Initial schedule consisting of 
0..25,000 jobs

● Time needed to add 1 job

● Time needed to perform 1 iteration of TS



  

qstat command with prediction


